67 research outputs found

    Competition between DivIVA and the nucleoid for ParA binding promotes segrosome separation and modulates mycobacterial cell elongation

    Get PDF
    Although mycobacteria are rod shaped and divide by simple binary fission, their cell cycle exhibits unusual features: unequal cell division producing daughter cells that elongate with different velocities, as well as asymmetric chromosome segregation and positioning throughout the cell cycle. As in other bacteria, mycobacterial chromosomes are segregated by pair of proteins, ParA and ParB. ParA is an ATPase that interacts with nucleoprotein ParB complexes - segrosomes and non-specifically binds the nucleoid. Uniquely in mycobacteria, ParA interacts with a polar protein DivIVA (Wag31), responsible for asymmetric cell elongation, however the biological role of this interaction remained unknown. We hypothesised that this interaction plays a critical role in coordinating chromosome segregation with cell elongation. Using a set of ParA mutants, we determined that disruption of ParA-DNA binding enhanced the interaction between ParA and DivIVA, indicating a competition between the nucleoid and DivIVA for ParA binding. Having identified the ParA mutation that disrupts its recruitment to DivIVA, we found that it led to inefficient segrosomes separation and increased the cell elongation rate. Our results suggest that ParA modulates DivIVA activity. Thus, we demonstrate that the ParA-DivIVA interaction facilitates chromosome segregation and modulates cell elongation

    Stochastic allocation of virtual paths to ATM links

    No full text

    Routing of Disjoint Backup Paths in ATM Networks

    Full text link

    Optimization of Wireless Networks for Resilience to Adverse Weather Conditions

    No full text
    International audienceIn this chapter, we consider how adverse weather conditions such as rain or fog affect the performance of wireless networks, and how to optimize these networks so as to make them robust to these conditions. We first show how to analyze the weather conditions in order to make them useful for network optimization modelling. Using an example realistic network, we show how to optimize two types of wireless networks: free-space optical (FSO) networks and wireless mesh networks (WMN). The key difference between the two network types is that in WMNs, links interfere with each other, while in FSO networks, link rates may be assumed independent. We formulate optimization problems to protect each network type against adverse weather conditions, discuss solution methods to solve them and present a numerical study illustrating the considerations of the chapter

    Performance of Traffic Engineering in Operational IP Networks – An Experimental Study

    No full text
    corecore