21 research outputs found

    Multi-wavelength analysis of high energy electrons in solar flares: a case study of August 20, 2002 flare

    Full text link
    A multi-wavelength spatial and temporal analysis of solar high energy electrons is conducted using the August 20, 2002 flare of an unusually flat (gamma=1.8) hard X-ray spectrum. The flare is studied using RHESSI, Halpha, radio, TRACE, and MDI observations with advanced methods and techniques never previously applied in the solar flare context. A new method to account for X-ray Compton backscattering in the photosphere (photospheric albedo) has been used to deduce the primary X-ray flare spectra. The mean electron flux distribution has been analysed using both forward fitting and model independent inversion methods of spectral analysis. We show that the contribution of the photospheric albedo to the photon spectrum modifies the calculated mean electron flux distribution, mainly at energies below 100 keV. The positions of the Halpha emission and hard X-ray sources with respect to the current-free extrapolation of the MDI photospheric magnetic field and the characteristics of the radio emission provide evidence of the closed geometry of the magnetic field structure and the flare process in low altitude magnetic loops. In agreement with the predictions of some solar flare models, the hard X-ray sources are located on the external edges of the Halpha emission and show chromospheric plasma heated by the non-thermal electrons. The fast changes of Halpha intensities are located not only inside the hard X-ray sources, as expected if they are the signatures of the chromospheric response to the electron bombardment, but also away from them.Comment: 26 pages, 9 figures, accepted to Solar Physic

    Techniques in Analytic Lamb Shift Calculations

    Full text link
    Quantum electrodynamics has been the first theory to emerge from the ideas of regularization and renormalization, and the coupling of the fermions to the virtual excitations of the electromagnetic field. Today, bound-state quantum electrodynamics provides us with accurate theoretical predictions for the transition energies relevant to simple atomic systems, and steady theoretical progress relies on advances in calculational techniques, as well as numerical algorithms. In this brief review, we discuss one particular aspect connected with the recent progress: the evaluation of relativistic corrections to the one-loop bound-state self-energy in a hydrogenlike ion of low nuclear charge number, for excited non-S states, up to the order of alpha (Zalpha)^6 in units of the electron mass. A few details of calculations formerly reported in the literature are discussed, and results for 6F, 7F, 6G and 7G states are given.Comment: 16 pages, LaTe

    Type III Radio Burst Productivity of Solar Flares

    Full text link
    We study the statistical relationship between optical flares and type III radio bursts, using modern and extensive computer files. Results emerge along two main lines, concerning the physical mechanism of ejection of energetic particles, and the magnetic field geometry respectively.First, we find that type III probability of occurrence increases strongly with the brightness of a flare and its proximity to a sunspot, and with accompanying prominence activity. This suggests that Bornmann's class I and III events correspond to distinct physical phenomena, particle acceleration and magnetic expansion respectively, both working simultaneously in class II events, which are the most favorable to the ejection of energetic particles out of flaring sites.</jats:p

    Cristal trapézoïdal en spectroscopie X d'implosion par laser

    No full text
    Elastically bent, trapezoidal crystals for Bragg diffraction of X-rays allow designing broadband spectrometers with flat field, normal incidence and high resolution. This is applied to study microballoon implosions driven by six laser beams.En courbant élastiquement un cristal trapézoïdal pour la diffraction de Bragg des rayons X, on réalise un spectrographe à champ plan, large bande et haute résolution, sous incidence normale. Grâce à lui, on étudie des implosions de microballons par un laser à six faisceaux
    corecore