5,436 research outputs found

    Fixed points of dynamic processes of set-valued F-contractions and application to functional equations

    Get PDF
    The article is a continuation of the investigations concerning F-contractions which have been recently introduced in [Wardowski in Fixed Point Theory Appl. 2012:94,2012]. The authors extend the concept of F-contractive mappings to the case of nonlinear F-contractions and prove a fixed point theorem via the dynamic processes. The paper includes a non-trivial example which shows the motivation for such investigations. The work is summarized by the application of the introduced nonlinear F-contractions to functional equations

    Hyperglycemia selectively increases the expression of cycloxygenase-2 in human aortic endothelial cells

    Get PDF
    The conversion of arachidonic acid to vasoactive prostanoids including prostacyclin, prostaglandins and tromboxanes is mediated by cycloxygenase (COX). Two isoforms of enzyme have been shown: a constitutive (COX-1) and an inducible form (COX-2). Products of the arachidonic acid metabolism may be involved in the impairment of endothelium-dependent vasodilatation observed both in experimental models and in patients with diabetes mellitus. To determine the effect of hyperglycemia on COX-1 and COX-2 expression, human aortic endothelial cells (HAEC) were exposed to normal (5.5mM) and high (22.2mM) concentrations of glucose for 5 days. Cells were also treated with mannitol (22.2 mM) to rule out an effect due to osmolality changes. COX-1 and COX-2 mRNA and protein expressions were analyzed by Southern and Western blotting, respectively. Treatment with high glucose was associated with a two-fold increase of both COX-2 mRNA (P<0.05) and protein levels (P<0.05), whereas no changes were observed for COX-1. Moreover high concentration of mannitol did not exert any significant effect. The present study demonstrates that both isoforms of COX are normally expressed in HAEC, but only COX-2 was stimulated after exposure to high glucose. The results of the present study may provide molecular basis to understand hyperglycemia-induced endothelial dysfunctio

    A vigorous activity cycle mimicking a planetary system in HD200466

    Get PDF
    Stellar activity can be a source of radial velocity (RV) noise and can reproduce periodic RV variations similar to those produced by an exoplanet. We present the vigorous activity cycle in the primary of the visual binary HD200466, a system made of two almost identical solar-type stars with an apparent separation of 4.6 arcsec at a distance of 44+/-2 pc. High precision RV over more than a decade, adaptive optics (AO) images, and abundances have been obtained for both components. A linear trend in the RV is found for the secondary. We assumed that it is due to the binary orbit and once coupled with the astrometric data, it strongly constrains the orbital solution of the binary at high eccentricities (e~0.85) and quite small periastron of ~21 AU. If this orbital motion is subtracted from the primary radial velocity curve, a highly significant (false alarm probability <0.1%) period of about 1300 d is obtained, suggesting in a first analysis the presence of a giant planet, but it turned out to be due to the stellar activity cycle. Since our spectra do not include the Ca~II resonance lines, we measured a chromospheric activity indicator based on the Halpha line to study the correlation between activity cycles and long-term activity variations. While the bisector analysis of the line profile does not show a clear indication of activity, the correlation between the Halpha line indicator and the RV measurements identify the presence of a strong activity cycle.Comment: Accepted on Astronomy and Astrophysics Main Journal 2014, 16 pages, 18 figure

    The GAPS Programme with HARPS-N at TNG. X. Differential abundances in the XO-2 planet hosting binary

    Get PDF
    Binary stars hosting exoplanets are a unique laboratory where chemical tagging can be performed to measure with high accuracy the elemental abundances of both stellar components, with the aim to investigate the formation of planets and their subsequent evolution. Here, we present a high-precision differential abundance analysis of the XO-2 wide stellar binary based on high resolution HARPS-N@TNG spectra. Both components are very similar K-dwarfs and host planets. Since they formed presumably within the same molecular cloud, we expect they should possess the same initial elemental abundances. We investigate if the presence of planets can cause some chemical imprints in the stellar atmospheric abundances. We measure abundances of 25 elements for both stars with a range of condensation temperature TC=401741T_{\rm C}=40-1741 K, achieving typical precisions of 0.07\sim 0.07 dex. The North component shows abundances in all elements higher by +0.067±0.032+0.067 \pm 0.032 dex on average, with a mean difference of +0.078 dex for elements with TC>800T_{\rm C} > 800 K. The significance of the XO-2N abundance difference relative to XO-2S is at the 2σ2\sigma level for almost all elements. We discuss the possibility that this result could be interpreted as the signature of the ingestion of material by XO-2N or depletion in XO-2S due to locking of heavy elements by the planetary companions. We estimate a mass of several tens of MM_{\oplus} in heavy elements. The difference in abundances between XO-2N and XO-2S shows a positive correlation with the condensation temperatures of the elements, with a slope of (4.7±0.9)×105(4.7 \pm 0.9) \times 10^{-5} dex K1^{-1}, which could mean that both components have not formed terrestrial planets, but that first experienced the accretion of rocky core interior to the subsequent giant planets.Comment: 10 pages, 5 figures, accepted by Astronomy & Astrophysics. Numbering of the series change

    Recent Heavy-Flavor results at STAR

    Full text link
    We present the recent results on non-photonic electron (NPE) yields from RHIC run8 p+p collisions. The e/πe/\pi ratio as a function of pTp_T in run8 with a factor of 10 reduction of the inner detector material at STAR is found to be consistent with those results from run3 taking into account the NPE from charm leptonic decay and the difference of photonic electron yield from photon conversion in detector material. \Jpsi spectra in \pp and \cucu collisions at \sNN = 200 GeV with high sampled luminosity \Jpsi spectrum at high-\pT follows xTx_T scaling, but the scaling is violated at low \pT. J/ψJ/\psi-hadron correlations in \pp collisions are studied to understand the \Jpsi production mechanism at high pTp_T. We observed an absence of charged hadrons accompanying \Jpsi on the near-side, in contrast to the strong correlation peak in the di-hadron correlations. This constrains the BB-meson contribution and jet fragmentation to inclusive \Jpsi to be <17{}^{<}_{\sim}17%. Yields in minimum-bias \cucu collisions are consistent with those in \pp collisions scaled by the underlying binary nucleon-nucleon collisions in the measured \pT range. Other measurements and future projects related to heavy-flavors are discussed.Comment: 8 pages 4 figures, proceedings of the International Conference on Strangeness in Quark Matter 2008 - Beijing, China, Oct. 6-10, 200

    Computational core and fixed-point organisation in Boolean networks

    Full text link
    In this paper, we analyse large random Boolean networks in terms of a constraint satisfaction problem. We first develop an algorithmic scheme which allows to prune simple logical cascades and under-determined variables, returning thereby the computational core of the network. Second we apply the cavity method to analyse number and organisation of fixed points. We find in particular a phase transition between an easy and a complex regulatory phase, the latter one being characterised by the existence of an exponential number of macroscopically separated fixed-point clusters. The different techniques developed are reinterpreted as algorithms for the analysis of single Boolean networks, and they are applied to analysis and in silico experiments on the gene-regulatory networks of baker's yeast (saccaromices cerevisiae) and the segment-polarity genes of the fruit-fly drosophila melanogaster.Comment: 29 pages, 18 figures, version accepted for publication in JSTA

    A novel TOF-PET MRI detector for diagnosis and follow up of the prostate cancer

    Full text link
    Prostate cancer is the most common disease in men and the second leading cause of death from cancer. Generic large imaging instruments used in cancer diagnosis have sensitivity, spatial resolution, and contrast inadequate for the task of imaging details of a small organ such as the prostate. In addition, multimodality imaging can play a significant role merging anatomical and functional details coming from simultaneous PET and MRI. Indeed, multi-parametric PET/MRI was demonstrated to improve diagnosis, but it suffers from too many false positives. In order to address the above limits of the current techniques, we have proposed, built and tested, thanks to the TOPEM project funded by Italian National Institute of Nuclear Phisics a prototype of an endorectal PET-TOF/MRI probe. In the applied magnification PET geometry, performance is dominated by a high-resolution detector placed closer to the source. The expected spatial resolution in the selected geometry is about 1.5 mm FWHM and efficiency a factor of 2 with respect to what obtained with the conventional PET scanner. In our experimental studies, we have obtained timing resolution of ~ 320 ps FWHM and at the same time Depth of Interaction (DOI) resolution of under 1 mm. Tests also showed that mutual adverse PET-MR effects are minimal. In addition, the matching endorectal RF coil was designed, built and tested. In the next planned studies, we expect that benefiting from the further progress in scintillator crystal surface treatment, in SiPM technology and associated electronics would allow us to significantly improve TOF resolutio
    corecore