772 research outputs found
A uniform reconstruction formula in integral geometry
A general method for analytic inversion in integral geometry is proposed. All
classical and some new reconstruction formulas of Radon-John type are obtained
by this method. No harmonic analysis and PDE is used
Twistor Theory and Differential Equations
This is an elementary and self--contained review of twistor theory as a
geometric tool for solving non-linear differential equations. Solutions to
soliton equations like KdV, Tzitzeica, integrable chiral model, BPS monopole or
Sine-Gordon arise from holomorphic vector bundles over T\CP^1. A different
framework is provided for the dispersionless analogues of soliton equations,
like dispersionless KP or Toda system in 2+1 dimensions. Their
solutions correspond to deformations of (parts of) T\CP^1, and ultimately to
Einstein--Weyl curved geometries generalising the flat Minkowski space. A
number of exercises is included and the necessary facts about vector bundles
over the Riemann sphere are summarised in the Appendix.Comment: 23 Pages, 9 Figure
Kopyor Coconut Detection Using Sound-based Dynamic TIME Warping Method
Kopyor coconut is a coconut that has genetic abnormalities which cause the coconut meat to have a unique texture and is detached from the coconut shell. Its uniqueness attracts many enthusiasts resulting in a high economic value, 4-5 times that of the ordinary coconut. From its external appearance, kopyor coconut does not differ with ordinary coconut and this poses a challenge in the detection stage. To date, both farmers and sellers use a traditional approach by listening to the sound of whisk from kopyor coconut to detect them. Unfortunately, this approach relies heavily on experience and expertise of the person. Therefore, a new detection approach is proposed based on sound recognition using Mel Frequency Cepstrum Coefficient (MFCC) as the method for feature extraction and Dynamic Time Warping (DTW) as the method for feature matching. Objects that will be detected are kopyor coconuts and ordinary coconut which has grown mature. By implementing both methods, a program has been developed to detect kopyor coconut with an accuracy of 93.8%
Generalized quantum tomographic maps
Some non-linear generalizations of classical Radon tomography were recently
introduced by M. Asorey et al [Phys. Rev. A 77, 042115 (2008), where the
straight lines of the standard Radon map are replaced by quadratic curves
(ellipses, hyperbolas, circles) or quadratic surfaces (ellipsoids,
hyperboloids, spheres). We consider here the quantum version of this novel
non-linear approach and obtain, by systematic use of the Weyl map, a
tomographic encoding approach to quantum states. Non-linear quantum tomograms
admit a simple formulation within the framework of the star-product
quantization scheme and the reconstruction formulae of the density operators
are explicitly given in a closed form, with an explicit construction of
quantizers and dequantizers. The role of symmetry groups behind the generalized
tomographic maps is analyzed in some detail. We also introduce new
generalizations of the standard singular dequantizers of the symplectic
tomographic schemes, where the Dirac delta-distributions of operator-valued
arguments are replaced by smooth window functions, giving rise to the new
concept of "thick" quantum tomography. Applications for quantum state
measurements of photons and matter waves are discussed.Comment: 8 page
Two-Dimensional Magnetic Resonance Tomographic Microscopy using Ferromagnetic Probes
We introduce the concept of computerized tomographic microscopy in magnetic
resonance imaging using the magnetic fields and field gradients from a
ferromagnetic probe. We investigate a configuration where a two-dimensional
sample is under the influence of a large static polarizing field, a small
perpendicular radio-frequency field, and a magnetic field from a ferromagnetic
sphere. We demonstrate that, despite the non-uniform and non-linear nature of
the fields from a microscopic magnetic sphere, the concepts of computerized
tomography can be applied to obtain proper image reconstruction from the
original spectral data by sequentially varying the relative sample-sphere
angular orientation. The analysis shows that the recent proposal for atomic
resolution magnetic resonance imaging of discrete periodic crystal lattice
planes using ferromagnetic probes can also be extended to two-dimensional
imaging of non-crystalline samples with resolution ranging from micrometer to
Angstrom scales.Comment: 9 pages, 11 figure
An international prospective general population-based study of respiratory work disability
Background: Previous cross-sectional studies have shown that job change due to breathing problems at the workplace (respiratory work disability) is common among adults of working age. That research indicated that occupational exposure to gases, dust and fumes was associated with job change due to breathing problems, although causal inferences have been tempered by the cross-sectional nature of previously available data. There is a need for general population-based prospective studies to assess the incidence of respiratory work disability and to delineate better the roles of potential predictors of respiratory work disability.Methods: A prospective general population cohort study was performed in 25 centres in 11 European countries and one centre in the USA. A longitudinal analysis was undertaken of the European Community Respiratory Health Survey including all participants employed at any point since the baseline survey, 6659 subjects randomly sampled and 779 subjects comprising all subjects reporting physician-diagnosed asthma. The main outcome measure was new-onset respiratory work disability, defined as a reported job change during follow-up attributed to breathing problems. Exposure to dusts (biological or mineral), gases or fumes during follow-up was recorded using a job-exposure matrix. Cox proportional hazard regression modelling was used to analyse such exposure as a predictor of time until job change due to breathing problems.Results: The incidence rate of respiratory work disability was 1.2/1000 person-years of observation in the random sample (95% CI 1.0 to 1.5) and 5.7/1000 person-years in the asthma cohort (95% CI 4.1 to 7.8). In the random population sample, as well as in the asthma cohort, high occupational exposure to biological dust, mineral dust or gases or fumes predicted increased risk of respiratory work disability. In the random sample, sex was not associated with increased risk of work disability while, in the asthma cohort, female sex was associated with an increased disability risk (hazard ratio 2.8, 95% CI 1.3 to 5.9).Conclusions: Respiratory work disability is common overall. It is associated with workplace exposures that could be controlled through preventive measures
Tomographic approach to resolving the distribution of LISA Galactic binaries
The space based gravitational wave detector LISA is expected to observe a
large population of Galactic white dwarf binaries whose collective signal is
likely to dominate instrumental noise at observational frequencies in the range
10^{-4} to 10^{-3} Hz. The motion of LISA modulates the signal of each binary
in both frequency and amplitude, the exact modulation depending on the source
direction and frequency. Starting with the observed response of one LISA
interferometer and assuming only doppler modulation due to the orbital motion
of LISA, we show how the distribution of the entire binary population in
frequency and sky position can be reconstructed using a tomographic approach.
The method is linear and the reconstruction of a delta function distribution,
corresponding to an isolated binary, yields a point spread function (psf). An
arbitrary distribution and its reconstruction are related via smoothing with
this psf. Exploratory results are reported demonstrating the recovery of binary
sources, in the presence of white Gaussian noise.Comment: 13 Pages and 9 figures high resolution figures can be obtains from
http://www.phys.utb.edu/~rajesh/lisa_tomography.pd
Entropic uncertainty relations for electromagnetic beams
The symplectic tomograms of 2D Hermite--Gauss beams are found and expressed
in terms of the Hermite polynomials squared. It is shown that measurements of
optical-field intensities may be used to determine the tomograms of
electromagnetic-radiation modes. Furthermore, entropic uncertainty relations
associated with these tomograms are found and applied to establish the
compatibility conditions of the the field profile properties with
Hermite--Gauss beam description. Numerical evaluations for some Hermite--Gauss
modes illustrating the corresponding entropic uncertainty relations are finally
given.Comment: Invited talk at the XV Central European Workshop on Quantum Optics
(Belgrade, Serbia, 30 May -- 3 June 2008), to appear in Physica Scripta
Isospin Dependence in the Odd-Even Staggering of Nuclear Binding Energies
The FRS-ESR facility at GSI provides unique conditions for precision
measurements of large areas on the nuclear mass surface in a single experiment.
Values for masses of 604 neutron-deficient nuclides (30<=Z<=92) were obtained
with a typical uncertainty of 30 microunits. The masses of 114 nuclides were
determined for the first time. The odd-even staggering (OES) of nuclear masses
was systematically investigated for isotopic chains between the proton shell
closures at Z=50 and Z=82. The results were compared with predictions of modern
nuclear models. The comparison revealed that the measured trend of OES is not
reproduced by the theories fitted to masses only. The spectral pairing gaps
extracted from models adjusted to both masses, and density related observables
of nuclei agree better with the experimental data.Comment: Physics Review Letters 95 (2005) 042501
http://link.aps.org/abstract/PRL/v95/e04250
- …
