1,534 research outputs found

    Microdeformation in Vredefort rocks; evidence for shock metamorphism

    Get PDF
    Planar microdeformations in quartz from basement or collar rocks of the Vredefort Dome have been cited for years as the main microtextural evidence for shock metamorphism in this structure. In addition, Schreyer describes feldspar recrystallization in rocks from the center of the Dome as the result of transformation of diaplectic glass, and Lilly reported the sighting of mosaicism in quartz. These textural observations are widely believed to indicate either an impact or an internally produced shock origin for the Vredefort Dome. Two types of (mostly sub) planar microdeformations are displayed in quartz grains from Vredefort rocks: (1) fluid inclusion trails, and (2) straight optical discontinuities that sometimes resemble lamellae. Both types occur as single features or as single or multiple sets in quartz grains. Besides qualitative descriptions of cleavage and recrystallization in feldspar and kinkbands in mica, no further microtextural evidence for shock metamorphism at Vredefort has been reported to date. Some 150 thin sections of Vredefort basement rocks were re-examined for potential shock and other deformation effects in all rock-forming minerals. This included petrographic study of two drill cores from the immediate vicinity of the center of the Dome. Observations recorded throughout the granitic core are given along with conclusions

    Ar-40 to Ar-39 dating of pseudotachylites from the Witwatersrand basin, South Africa, with implications for the formation of the Vredefort Dome

    Get PDF
    The formation of the Vredefort Dome, a structure in excess of 100 km in diameter and located in the approximate center of the Witwatersrand basin, is still the subject of lively geological controversy. It is widely accepted that its formation seems to have taken place in a single sudden event, herein referred to as the Vredefort event, accompanied by the release of gigantic amounts of energy. It is debated, however, whether this central event was an internal one, i.e., a cryptoexplosion triggered by volcanic or tectonic processes, or the impact of an extraterrestrial body. The results of this debate are presented

    An Extended Field of Crater Structures in Egypt: Observations and Hypotheses

    Get PDF
    We detected more than 1000 crater structures in the Western Egyptian Desert, distributed over 40000 km2, among which 62 were studied on the field. Two hypotheses are proposed for their origin: hydrothermal vent complexes or impact craters generated by a rubble-pile asteroid

    Podoplanin-positive cells are a hallmark of encapsulating peritoneal sclerosis

    Get PDF
    Background. Encapsulating peritoneal sclerosis (EPS) and simple peritoneal sclerosis are important complications of long-term peritoneal dialysis (PD). Podoplanin is expressed by mesothelial cells and lymphatic vessels, which are involved in inflammatory reactions in the peritoneal cavity. Methods. We studied 69 peritoneal biopsies from patients on PD (n = 16), patients with EPS (n = 18) and control biopsies taken at the time of hernia repair (n = 15) or appendectomy (n = 20). Immunohistochemistry was performed to localize podoplanin. Additionally, markers of endothelial cells, mesothelial cells, myofibroblasts (smooth muscle actin), proliferating cells, and double labelling for smooth muscle actin/podoplanin were used on selected biopsies. Results. Podoplanin was present on the endothelium of lymphatic vessels in the submesothelial fibrous tissue and on mesothelial cells. In patients on PD and in biopsies with appendicitis, the mesothelial cells demonstrated a cuboidal appearance and circumferential podoplanin staining, with gaps between the cells. The number of lymphatic vessels was variable, but prominent at sites of fibrosis. In patients with EPS, a diffuse infiltration of podoplanin-positive cells with a fibroblastic appearance was present in 15 out of 18 biopsies. This pattern was focally present in 3 out of 16 on PD and none in the 35 controls. The podoplanin-positive cells did not express the endothelial marker or the mesothelial marker (calretinin). Conclusions. EPS is characterized by a population of podoplanin and smooth muscle actin double-positive cells. Podoplanin might be a suitable morphological marker supporting the diagnosis and might be involved in the pathogenesis of EP

    Results from recent detachment experiments in alternative divertor configurations on TCV

    Get PDF
    Divertor detachment is explored on the TCV tokamak in alternative magnetic geometries. Starting from typical TCV single-null shapes, the poloidal flux expansion at the outer strikepoint is varied by a factor of 10 to investigate the X-divertor characteristics, and the total flux expansion is varied by 70% to study the properties of the super-X divertor. The effect of an additional X-point near the target is investigated in X-point target divertors. Detachment of the outer target is studied in these plasmas during Ohmic density ramps and with the ion ∇B drift away from the primary X-point. The detachment threshold, depth of detachment, and the stability of the radiation location are investigated using target measurements from the wall-embedded Langmuir probes and two-dimensional CIII line emissivity profiles across the divertor region, obtained from inverted, toroidally-integrated camera data. It is found that increasing poloidal flux expansion results in a deeper detachment for a given line-averaged density and a reduction in the radiation location sensitivity to core density, while no large effect on the detachment threshold is observed. The total flux expansion, contrary to expectations, does not show a significant influence on any detachment characteristics in these experiments. In X-point target geometries, no evidence is found for a reduced detachment threshold despite a 2-3 fold increase in connection length. A reduced radiation location sensitivity to core plasma density in the vicinity of the target X-point is suggested by the measurements

    Physiological IRE-1-XBP-1 and PEK-1 Signaling in Caenorhabditis elegans Larval Development and Immunity

    Get PDF
    Endoplasmic reticulum (ER) stress activates the Unfolded Protein Response, a compensatory signaling response that is mediated by the IRE-1, PERK/PEK-1, and ATF-6 pathways in metazoans. Genetic studies have implicated roles for UPR signaling in animal development and disease, but the function of the UPR under physiological conditions, in the absence of chemical agents administered to induce ER stress, is not well understood. Here, we show that in Caenorhabditis elegans XBP-1 deficiency results in constitutive ER stress, reflected by increased basal levels of IRE-1 and PEK-1 activity under physiological conditions. We define a dynamic, temperature-dependent requirement for XBP-1 and PEK-1 activities that increases with immune activation and at elevated physiological temperatures in C. elegans. Our data suggest that the negative feedback loops involving the activation of IRE-1-XBP-1 and PEK-1 pathways serve essential roles, not only at the extremes of ER stress, but also in the maintenance of ER homeostasis under physiological conditions.National Institutes of Health (U.S.) (grant R01-GM084477
    corecore