3,507 research outputs found
Інтерактивний контроль при формоутворенні багатогабаритних деталей
Physical phenomenon of warping (springing) can be observed as a technological heritage after large-dimensional articles forming or curing and consequent cooling of composite articles. This phenomenon can be seen as gaps between ready article contour and forming jig contour. Deviation degree of ready article surface from theoretical contour and article dimensions has to be controlled during manufacturing. Application of auxiliary controlling jig leads to expenses and labor-manufacturability increasing. Possibility of application forming jig with inserted jet gages is considered for articles shape controlling. Such gages and realization of acoustic methods allow to control not only final article shape but also geometry on intermediate stages of manufacturing.Після формоутворення багатогабаритних листових деталей з листових механічних заготовок або полімеризації і охолодження деталей з композитних матеріалів проявляється технологічна спадковість у вигляді викривлення (пружнення). Це спостерігається у вигляді неприлягання готової деталі до формозадаючої поверхні технологічного оснащення. При контролі якості формозміни необхідно вимірювати
ступінь порушення форми і розмірів. Застосування контрольної оснастки дорого і складно. Розглянуто можливість використання для контролю формозадаючої оснастки з встановленими в ній повітряними струминними датчиками. Такі датчики і застосування акустичних методів дозволяють контролювати не тільки кінцеву форму заготовки, а й форму заготовки на попередваріантних етапах формозміни
Competing redox reactions in Fe-containing AlO(OH) and Al2O 3 matrices: A combined investigation by Mössbauer, ESR spectroscopy and thermal analysis
The investigation of iron-doped AlO(OH)/Al2O3 systems revealed that the combined employment of Mössbauer and ESR spectroscopies together with thermal analysis yields meaningful data with complementary information. This mutual complementarity is based on the coexistence of Fe point defects with the corresponding aggregated FeOx species which has been observed even for very low Fe concentrations. Competing redox processes between the dopant, the AlOx matrix, and the gas atmosphere during the thermal treatment enable the generation of solid phases exhibiting specific chemical properties. The entire reaction process is influenced by a specific mechanical and thermal pre-treatment that affects predominantly oxydative processes in the matrix. A protecting influence of the matrix preventing further reductive attack of the Fe3+ Fe2+ ions by hydrogen has been established
Molecular switching in iron complexes bridged via tin-cyanides observed by Mössbauer and ESR spectroscopy
The precursor [FeIII(L)Cl] (LH2 N,N'-bis(2'-hydroxy- 3'-X-benzyliden)-1,6-diamino-3-N-hexane) is a high-spin (S 5/2) complex (with X -CH3, -O-CH3). This precursor is combined with the bridging unit [SnIV(CN)4] to yield star-shaped pentanuclear clusters, [(L-X-FeIII)4Sn(CN) 4]Cl4 57Fe-Mössbauer, 119mSn- Mössbauer, and ESR spectroscopy are used to study our samples. For X -CH3 the 57Fe-Mössbauer data show a multiple spin transition between iron(III) in the high-spin and low-spin state. Changing the functional group from X -CH3 to X -O-CH3 turns the switchability off
The improvement of Mo/4H-SiC Schottky diodes via a P2O5 surface passivation treatment
Molybdenum (Mo)/4H-silicon carbide (SiC) Schottky barrier diodes have been fabricated with a phosphorus pentoxide (P2O5) surface passivation treatment performed on the SiC surface prior to metallization. Compared to the untreated diodes, the P2O5-treated diodes were found to have a lower Schottky barrier height by 0.11 eV and a lower leakage current by two to three orders of magnitude. Physical characterization of the P2O5-treated Mo/SiC interfaces revealed that there are two primary causes for the improvement in electrical performance. First, transmission electron microscopy imaging showed that nanopits filled with silicon dioxide had formed at the surface after the P2O5 treatment that terminates potential leakage paths. Second, secondary ion mass spectroscopy revealed a high concentration of phosphorus atoms near the interface. While only a fraction of these are active, a small increase in doping at the interface is responsible for the reduction in barrier height. Comparisons were made between the P2O5 pretreatment and oxygen (O2) and nitrous oxide (N2O) pretreatments that do not form the same nanopits and do not reduce leakage current. X-ray photoelectron spectroscopy shows that SiC beneath the deposited P2O5 oxide retains a Si-rich interface unlike the N2O and O2 treatments that consume SiC and trap carbon at the interface. Finally, after annealing, the Mo/SiC interface forms almost no silicide, leaving the enhancement to the subsurface in place, explaining why the P2O5 treatment has had no effect on nickel- or titanium-SiC contacts
Readout of GEM Detectors Using the Medipix2 CMOS Pixel Chip
We have operated a Medipix2 CMOS readout chip, with amplifying, shaping and
charge discriminating front-end electronics integrated on the pixel-level, as a
highly segmented direct charge collecting anode in a three-stage gas electron
multiplier (Triple-GEM) to detect the ionization from Fe X-rays and
electrons from Ru. The device allows to perform moderate energy
spectroscopy measurements (20 % FWHM at 5.9 keV -rays) using only digital
readout and two discriminator thresholds. Being a truly 2D-detector, it allows
to observe individual clusters of minimum ionizing charged particles in
(70:30) and (70:30) mixtures and to achieve excellent
spatial resolution for position reconstruction of primary clusters down to
, based on the binary centroid determination method.Comment: 18 pages, 14 pictures. submitted to Nuclear Instruments and Methods
in Physics Research
Iron(III) Complexes on a Dendrimeric Basis and Various Amine Core Investigated by Mössbauer Spectroscopy
Dendrimers of various generations were synthesized by the divergent method. Starting from various amine cores (G(0a), G(0b), G(0c)) the generations were built by reaction of the amine with acrylnitrile followed by hydrogenation with DIBAL-H. Treatment with salicylaldehyde creates a fivefold coordination sphere for iron in the molecular periphery. The resulting multinuclear coordination compounds are investigated by Mossbauer spectroscopy
Algebraic Properties of Qualitative Spatio-Temporal Calculi
Qualitative spatial and temporal reasoning is based on so-called qualitative
calculi. Algebraic properties of these calculi have several implications on
reasoning algorithms. But what exactly is a qualitative calculus? And to which
extent do the qualitative calculi proposed meet these demands? The literature
provides various answers to the first question but only few facts about the
second. In this paper we identify the minimal requirements to binary
spatio-temporal calculi and we discuss the relevance of the according axioms
for representation and reasoning. We also analyze existing qualitative calculi
and provide a classification involving different notions of a relation algebra.Comment: COSIT 2013 paper including supplementary materia
Optimisation of post-drawing treatments by means of neutron diffraction
The mechanical properties and the durability of cold-drawn eutectoid wires (especially in aggressive environments) are influenced by the residual stresses generated during the drawing process. Steelmakers have devised procedures (thermomechanical treatments after drawing) attempting to relieve them in order to improve wire performance. In thiswork neutron diffraction measurements have been used to ascertain the role of temperature and applied force – during post-drawing treatments – on the residual stresses of five rod batches with different treatments. The results show that conventional thermomechanical treatments are successful in relieving the residual stresses created by cold-drawing, although these procedures can be improved by changing the temperature or the stretching force. Knowledge of the residual stress profiles after these changes is a useful tool to improve the thermomechanical treatments instead of the empirical procedures used currently
- …
