33 research outputs found
AXES at TRECVID 2012: KIS, INS, and MED
The AXES project participated in the interactive instance search task (INS), the known-item search task (KIS), and the multimedia event detection task (MED) for TRECVid 2012. As in our TRECVid 2011 system, we used nearly identical search systems and user interfaces for both INS and KIS. Our interactive INS and KIS systems focused this year on using classifiers trained at query time with positive examples collected from external search engines. Participants in our KIS experiments were media professionals from the BBC; our INS experiments were carried out by students and researchers at Dublin City University. We performed comparatively well in both experiments. Our best KIS run found 13 of the 25 topics, and our best INS runs outperformed all other submitted runs in terms of P@100. For MED, the system presented was based on a minimal number of low-level descriptors, which we chose to be as large as computationally feasible. These descriptors are aggregated to produce high-dimensional video-level signatures, which are used to train a set of linear classifiers. Our MED system achieved the second-best score of all submitted runs in the main track, and best score in the ad-hoc track, suggesting that a simple system based on state-of-the-art low-level descriptors can give relatively high performance. This paper describes in detail our KIS, INS, and MED systems and the results and findings of our experiments
The AXES submissions at TrecVid 2013
The AXES project participated in the interactive instance search task (INS), the semantic indexing task (SIN) the multimedia event recounting task (MER), and the multimedia event detection task (MED) for TRECVid 2013. Our interactive INS focused this year on using classifiers trained at query time with positive examples collected from external search engines. Participants in our INS experiments were carried out by students and researchers at Dublin City University. Our best INS runs performed on par with the top ranked INS runs in terms of P@10 and P@30, and around the median in terms of mAP.
For SIN, MED and MER, we use systems based on state- of-the-art local low-level descriptors for motion, image, and sound, as well as high-level features to capture speech and text and the visual and audio stream respectively. The low-level descriptors were aggregated by means of Fisher vectors into high- dimensional video-level signatures, the high-level features are aggregated into bag-of-word histograms. Using these features we train linear classifiers, and use early and late-fusion to combine the different features. Our MED system achieved the best score of all submitted runs in the main track, as well as in the ad-hoc track.
This paper describes in detail our INS, MER, and MED systems and the results and findings of our experimen
Reply: Choosing a stable housekeeping gene and protein is essential in generating valid gene and protein expression results
Quantitative measurement of a new synthetic hetrazepine derivative, BN50730, in human plasma and urine by combined liquid chromatography—negative chemical ionization mass spectrometry using a particle beam interface
Attentive Semantic Alignment with Offset-Aware Correlation Kernels
Semantic correspondence is the problem of establishing correspondences across images depicting different instances of the same object or scene class. One of recent approaches to this problem is to estimate parameters of a global transformation model that densely aligns one image to the other. Since an entire correlation map between all feature pairs across images is typically used to predict such a global transformation, noisy features from different backgrounds, clutter, and occlusion distract the predictor from correct estimation of the alignment. This is a challenging issue, in particular, in the problem of semantic correspondence where a large degree of image variations is often involved. In this paper, we introduce an attentive semantic alignment method that focuses on reliable correlations, filtering out distractors. For effective attention, we also propose an offset-aware correlation kernel that learns to capture translation-invariant local transformations in computing correlation values over spatial locations. Experiments demonstrate the effectiveness of the attentive model and offset-aware kernel, and the proposed model combining both techniques achieves the state-of-the-art performance.N
Different DNA-PKcs functions in the repair of radiation-induced and spontaneous DSBs within interstitial telomeric sequences
SegStereo: Exploiting Semantic Information for Disparity Estimation
Disparity estimation for binocular stereo images finds a wide range of applications. Traditional algorithms may fail on featureless regions, which could be handled by high-level clues such as semantic segments. In this paper, we suggest that appropriate incorporation of semantic cues can greatly rectify prediction in commonly-used disparity estimation frameworks. Our method conducts semantic feature embedding and regularizes semantic cues as the loss term to improve learning disparity. Our unified model SegStereo employs semantic features from segmentation and introduces semantic softmax loss, which helps improve the prediction accuracy of disparity maps. The semantic cues work well in both unsupervised and supervised manners. SegStereo achieves state-of-the-art results on KITTI Stereo benchmark and produces decent prediction on both CityScapes and FlyingThings3D datasets. © Springer Nature Switzerland AG 2018
