678 research outputs found
Tests of Transfer Reaction Determinations of Astrophysical S-Factors
The reaction has been used to determine
asymptotic normalization coefficients for transitions to the ground and first
excited states of . The coefficients provide the normalization for
the tails of the overlap functions for and allow us
to calculate the S-factors for at astrophysical
energies. The calculated S-factors are compared to measurements and found to be
in very good agreement. This provides the first test of this indirect method to
determine astrophysical direct capture rates using transfer reactions. In
addition, our results yield S(0) for capture to the ground and first excited
states in , without the uncertainty associated with extrapolation from
higher energies.Comment: 6 pages, 2 figure
Asymptotic Normalization Coefficients for 13C+p->14N
The proton exchange reaction has been measured
at an incident energy of 162 MeV. Angular distributions were obtained for
proton transfer to the ground and low lying excited states in . Elastic
scattering of on also was measured out to the rainbow angle
region in order to find reliable optical model potentials. Asymptotic
normalization coefficients for the system have been
found for the ground state and the excited states at 2.313, 3.948, 5.106 and
5.834 MeV in . These asymptotic normalization coefficients will be used
in a determination of the S-factor for at solar
energies from a measurement of the proton transfer reaction
.Comment: 5 pages, 6 figure
Asymptotic normalization coefficients for 8B->7Be+p from a study of 8Li->7Li+n
Asymptotic normalization coefficients (ANCs) for 8Li->7Li+n have been
extracted from the neutron transfer reaction 13C(7Li,8Li)12C at 63 MeV. These
are related to the ANCs in 8B->7Be+p using charge symmetry. We extract ANCs for
8B that are in very good agreement with those inferred from proton transfer and
breakup experiments. We have also separated the contributions from the p_1/2
and p_3/2 components in the transfer. We find the astrophysical factor for the
7Be(p,gamma)8B reaction to be S_17(0)=17.6+/-1.7 eVb. This is the first time
that the rate of a direct capture reaction of astrophysical interest has been
determined through a measurement of the ANCs in the mirror system.Comment: 5 pages, 3 figures, 2 table
How does breakup influence the total fusion of Li at the Coulomb barrier?
Total (complete + incomplete) fusion excitation functions of Li on
Co and Bi targets around the Coulomb barrier are obtained using
a new continuum discretized coupled channel (CDCC) method of calculating
fusion. The relative importance of breakup and bound-state structure effects on
total fusion is particularly investigated. The effect of breakup on fusion can
be observed in the total fusion excitation function. The breakup enhances the
total fusion at energies just around the barrier, whereas it hardly affects the
total fusion at energies well above the barrier. The difference between the
experimental total fusion cross sections for Li on Co is notably
caused by breakup, but this is not the case for the Bi target.Comment: 9 pages, 9 figures, Submitted to Phys. Rev.
Multiple electromagnetic electron positron pair production in relativistic heavy ion collisions
We calculate the cross sections for the production of one and more
electron-positron pairs due to the strong electromagnetic fields in
relativistic heavy ion collisions. Using the generating functional of fermions
in an external field we derive the N-pair amplitude. Neglecting the
antisymmetrisation in the final state we find that the total probability to
produce N pairs is a Poisson distribution. We calculate total cross sections
for the production of one pair in lowest order and also include higher-order
corrections from the Poisson distribution up to third order. Furthermore we
calculate cross sections for the production of up to five pairs including
corrections from the Poisson distribution.Comment: 13 pages REVTeX, 4 Postscript figures, This and related papers may
also be obtained from http://www.phys.washington.edu/~hencken
Collective Modes of Tri-Nuclear Molecules
A geometrical model for tri-nuclear molecules is presented. An analytical
solution is obtained provided the nuclei, which are taken to be prolately
deformed, are connected in line to each other. Furthermore, the tri-nuclear
molecule is composed of two heavy and one light cluster, the later sandwiched
between the two heavy clusters. A basis is constructed in which Hamiltonians of
more general configurations can be diagonalized. In the calculation of the
interaction between the clusters higher multipole deformations are taken into
account, including the hexadecupole one. A repulsive nuclear core is introduced
in the potential in order to insure a quasi-stable configuration of the system.
The model is applied to three nuclear molecules, namely Sr + Be +
Ba, Mo + Be + Te and Ru + Be +
Sn.Comment: 24 pages, 9 figure
Effect of continuum couplings in fusion of halo Be on Pb around the Coulomb barrier
The effect of continuum couplings in the fusion of the halo nucleus Be
on Pb around the Coulomb barrier is studied using a three-body model
within a coupled discretised continuum channels (CDCC) formalism. We
investigate in particular the role of continuum-continuum couplings. These are
found to hinder total, complete and incomplete fusion processes. Couplings to
the projectile bound excited state redistribute the complete and
incomplete fusion cross sections, but the total fusion cross section remains
nearly constant. Results show that continuum-continuum couplings enhance the
irreversibility of breakup and reduce the flux that penetrates the Coulomb
barrier. Converged total fusion cross sections agree with the experimental ones
for energies around the Coulomb barrier, but underestimate those for energies
well above the Coulomb barrier.Comment: 15 pages, 7 figures, accepted in Phys. Rev.
Accelerating Uranium in RHIC – II Surviving the AGS Vacuum
This Report is about the description of the survival rate of charge 90+ uranium ions in the AGS vacuum
Coulomb Effects on Electromagnetic Pair Production in Ultrarelativistic Heavy-Ion Collisions
We discuss the implications of the eikonal amplitude on the pair production
probability in ultrarelativistic heavy-ion transits. In this context the
Weizs\"acker-Williams method is shown to be exact in the ultrarelativistic
limit, irrespective of the produced particles' mass. A new equivalent
single-photon distribution is derived which correctly accounts for the Coulomb
distortions. As an immediate application, consequences for unitarity violation
in photo-dissociation processes in peripheral heavy-ion encounters are
discussed.Comment: 13 pages, 4 .eps figure
Singularities of -fold integrals of the Ising class and the theory of elliptic curves
We introduce some multiple integrals that are expected to have the same
singularities as the singularities of the -particle contributions
to the susceptibility of the square lattice Ising model. We find
the Fuchsian linear differential equation satisfied by these multiple integrals
for and only modulo some primes for and , thus
providing a large set of (possible) new singularities of the . We
discuss the singularity structure for these multiple integrals by solving the
Landau conditions. We find that the singularities of the associated ODEs
identify (up to ) with the leading pinch Landau singularities. The second
remarkable obtained feature is that the singularities of the ODEs associated
with the multiple integrals reduce to the singularities of the ODEs associated
with a {\em finite number of one dimensional integrals}. Among the
singularities found, we underline the fact that the quadratic polynomial
condition , that occurs in the linear differential equation
of , actually corresponds to a remarkable property of selected
elliptic curves, namely the occurrence of complex multiplication. The
interpretation of complex multiplication for elliptic curves as complex fixed
points of the selected generators of the renormalization group, namely
isogenies of elliptic curves, is sketched. Most of the other singularities
occurring in our multiple integrals are not related to complex multiplication
situations, suggesting an interpretation in terms of (motivic) mathematical
structures beyond the theory of elliptic curves.Comment: 39 pages, 7 figure
- …
