135 research outputs found

    The Use of Selected Methods of Linear Ordering to Assess the Innovation Performance of the European Union Member States

    Get PDF
    The growing interest in measuring economic and social phenomena that are difficult to observe directly increases the need for researchers to broaden the use of multivariate statistical analysis methods. The ease of interpreting results presented in the form of rankings makes it common practice to use different methods of linear ordering of objects. If the appropriate assumptions are met, the determined set of variables allows for the construction of a synthetic measure whose ordered values provide a ranking. Such a statistical approach is quite often used in assessing the level of innovativeness of economies, and the literature abounds in various innovation indices. The starting point of this paper is a set of 27 variables on the basis of which the Summary Innovation Index is developed. After verifying the statistical assumptions and reducing the database to 21 diagnostic factors, the authors construct a total of nine innovation rankings, using different methods of linear ordering and selected procedures for normalisation of variables. The aim of the paper is therefore to assess the impact of selected methods of linear ordering (Hellwig’s method, TOPSIS method, GDM method) and various procedures for normalising variables (classic standardisation, positional standardisation, quotient transformation) on the final ranking of the EU Member States due to the level of their innovation performance. The obtained results confirm that the applied method of linear ordering and the selection of the normalisation procedure have an impact on the final ranking of the examined objects – in this case, the final ranking of the EU Member States due to the level of their innovativeness analysed in the presented research

    Determinants of Digital Economy Development in the EU Member States: The Role of Technological Infrastructure, Human Capital, and Innovation (2017-2022)

    Get PDF
    Motivation: The rapid digital transformation in the European Union has highlighted the increasing importance of the digital economy in shaping national competitiveness. Recent studies underline the relevance of innovation, human capital, and digital infrastructure as critical factors driving digitalisation. Despite extensive literature on digital economy development, there is a gap in understanding the specific determinants that influence the digitalisation levels across EU member states. This study addresses this gap by examining the relationship between digital infrastructure, human capital, and innovation in fostering digital growth, using the Digital Economy and Society Index (DESI) and European Innovation Scoreboard (EIS) as key indicators. Aim: The aim of this research is to identify and quantify the key determinants influencing the development of the digital economy in the EU member states between 2017 and 2022. Specifically, the study investigates the impact of technological infrastructure, human capital, and intellectual assets on the digital economy. By employing multiple linear regression models, the research aims to clarify how these factors contribute to digital economy growth. Results: The analysis revealed that technological infrastructure and use of IT are consistently the most significant determinants of digital economy development. Human capital, particularly in terms of education and digital skills, gained importance in the later years of the study. Intellectual assets, such as patents and research outputs, also played a critical role, particularly from 2021 onwards. The findings suggest that countries with robust digital infrastructure, well-educated workforces, and strong innovation ecosystems tend to perform better in terms of digitalisation as measured by DESI. These insights provide valuable guidance for policymakers aiming to enhance digital competitiveness through targeted investments in technology, education and innovation

    The Role of Glypicans in Wnt Inhibitory Factor-1 Activity and the Structural Basis of Wif1's Effects on Wnt and Hedgehog Signaling

    Get PDF
    Proper assignment of cellular fates relies on correct interpretation of Wnt and Hedgehog (Hh) signals. Members of the Wnt Inhibitory Factor-1 (WIF1) family are secreted modulators of these extracellular signaling pathways. Vertebrate WIF1 binds Wnts and inhibits their signaling, but its Drosophila melanogaster ortholog Shifted (Shf) binds Hh and extends the range of Hh activity in the developing D. melanogaster wing. Shf activity is thought to depend on reinforcing interactions between Hh and glypican HSPGs. Using zebrafish embryos and the heterologous system provided by D. melanogaster wing, we report on the contribution of glypican HSPGs to the Wnt-inhibiting activity of zebrafish Wif1 and on the protein domains responsible for the differences in Wif1 and Shf specificity. We show that Wif1 strengthens interactions between Wnt and glypicans, modulating the biphasic action of glypicans towards Wnt inhibition; conversely, glypicans and the glypican-binding “EGF-like” domains of Wif1 are required for Wif1's full Wnt-inhibiting activity. Chimeric constructs between Wif1 and Shf were used to investigate their specificities for Wnt and Hh signaling. Full Wnt inhibition required the “WIF” domain of Wif1, and the HSPG-binding EGF-like domains of either Wif1 or Shf. Full promotion of Hh signaling requires both the EGF-like domains of Shf and the WIF domains of either Wif1 or Shf. That the Wif1 WIF domain can increase the Hh promoting activity of Shf's EGF domains suggests it is capable of interacting with Hh. In fact, full-length Wif1 affected distribution and signaling of Hh in D. melanogaster, albeit weakly, suggesting a possible role for Wif1 as a modulator of vertebrate Hh signaling

    PAHs, PCBs, PBDEs and Pesticides in Cold-Pressed Vegetable Oils

    Get PDF
    The aim of this study was to investigate levels of polychlorinated biphenyls (marker and dioxin-like congeners), polycyclic aromatic hydrocarbons (EPA 15 + 1), polybrominated diphenyl ethers (14 predominant congeners) and pesticides (74 compounds) in various cold-pressed vegetable oils. Poppy seed oil, rapeseed oil, sesame seed oil, pumpkinseed oil, hempseed oil, linaire oil, borage oil and evening star oil were investigated. Results of this study revealed that concentrations of PCBs, PBDEs and PAHs were low in majority of the investigated samples. However, high concentrations of organophosphorus insecticides were found. Chlorpyrifos methyl and pirimiphos methyl were the pesticide residues most commonly found in the studied oils. Concentration of 15 + 1 EPA PAHs was within the 17.85–37.16 μg kg−1 range, concentration of (marker) PCBs varied from 127 to 24,882 pg g−1, dioxin-like TEQ values were below 0.1 pg TEQ g−1. Concentration of PBDEs was below LOQ in most cases

    Multiple Wnts Redundantly Control Polarity Orientation in Caenorhabditis elegans Epithelial Stem Cells

    Get PDF
    During development, cell polarization is often coordinated to harmonize tissue patterning and morphogenesis. However, how extrinsic signals synchronize cell polarization is not understood. In Caenorhabditis elegans, most mitotic cells are polarized along the anterior-posterior axis and divide asymmetrically. Although this process is regulated by a Wnt-signaling pathway, Wnts functioning in cell polarity have been demonstrated in only a few cells. We analyzed how Wnts control cell polarity, using compound Wnt mutants, including animals with mutations in all five Wnt genes. We found that somatic gonadal precursor cells (SGPs) are properly polarized and oriented in quintuple Wnt mutants, suggesting Wnts are dispensable for the SGPs' polarity, which instead requires signals from the germ cells. Thus, signals from the germ cells organize the C. elegans somatic gonad. In contrast, in compound but not single Wnt mutants, most of the six seam cells, V1–V6 (which are epithelial stem cells), retain their polarization, but their polar orientation becomes random, indicating that it is redundantly regulated by multiple Wnt genes. In contrast, in animals in which the functions of three Wnt receptors (LIN-17, MOM-5, and CAM-1) are disrupted—the stem cells are not polarized and divide symmetrically—suggesting that the Wnt receptors are essential for generating polarity and that they function even in the absence of Wnts. All the seam cells except V5 were polarized properly by a single Wnt gene expressed at the cell's anterior or posterior. The ectopic expression of posteriorly expressed Wnts in an anterior region and vice versa rescued polarity defects in compound Wnt mutants, raising two possibilities: one, Wnts permissively control the orientation of polarity; or two, Wnt functions are instructive, but which orientation they specify is determined by the cells that express them. Our results provide a paradigm for understanding how cell polarity is coordinated by extrinsic signals

    Coordination of Cell Differentiation and Migration in Mathematical Models of Caudal Embryonic Axis Extension

    Get PDF
    Vertebrate embryos display a predominant head-to-tail body axis whose formation is associated with the progressive development of post-cranial structures from a pool of caudal undifferentiated cells. This involves the maintenance of active FGF signaling in this caudal region as a consequence of the restricted production of the secreted factor FGF8. FGF8 is transcribed specifically in the caudal precursor region and is down-regulated as cells differentiate and the embryo extends caudally. We are interested in understanding the progressive down-regulation of FGF8 and its coordination with the caudal movement of cells which is also known to be FGF-signaling dependent. Our study is performed using mathematical modeling and computer simulations. We use an individual-based hybrid model as well as a caricature continuous model for the simulation of experimental observations (ours and those known from the literature) in order to examine possible mechanisms that drive differentiation and cell movement during the axis elongation. Using these models we have identified a possible gene regulatory network involving self-repression of a caudal morphogen coupled to directional domain movement that may account for progressive down-regulation of FGF8 and conservation of the FGF8 domain of expression. Furthermore, we have shown that chemotaxis driven by molecules, such as FGF8 secreted in the stem zone, could underlie the migration of the caudal precursor zone and, therefore, embryonic axis extension. These mechanisms may also be at play in other developmental processes displaying a similar mode of axis extension coupled to cell differentiation

    The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases

    Get PDF
    The Ca2+-sensing receptor (CaSR) is a dimeric family C G protein-coupled receptor that is expressed in calcitropic tissues such as the parathyroid glands and the kidneys and signals via G proteins and β-arrestin. The CaSR has a pivotal role in bone and mineral metabolism, as it regulates parathyroid hormone secretion, urinary Ca2+ excretion, skeletal development and lactation. The importance of the CaSR for these calcitropic processes is highlighted by loss-of-function and gain-of-function CaSR mutations that cause familial hypocalciuric hypercalcaemia and autosomal dominant hypocalcaemia, respectively, and also by the fact that alterations in parathyroid CaSR expression contribute to the pathogenesis of primary and secondary hyperparathyroidism. Moreover, the CaSR is an established therapeutic target for hyperparathyroid disorders. The CaSR is also expressed in organs not involved in Ca2+ homeostasis: it has noncalcitropic roles in lung and neuronal development, vascular tone, gastrointestinal nutrient sensing, wound healing and secretion of insulin and enteroendocrine hormones. Furthermore, the abnormal expression or function of the CaSR is implicated in cardiovascular and neurological diseases, as well as in asthma, and the CaSR is reported to protect against colorectal cancer and neuroblastoma but increase the malignant potential of prostate and breast cancers

    A phenotypic screen in zebrafish identifies a novel small-molecule inducer of ectopic tail formation suggestive of alterations in non-canonical Wnt/PCP signaling

    Get PDF
    Zebrafish have recently emerged as an attractive model for the in vivo bioassay-guided isolation and characterization of pharmacologically active small molecules of natural origin. We carried out a zebrafish-based phenotypic screen of over 3000 plant-derived secondary metabolite extracts with the goal of identifying novel small-molecule modulators of the BMP and Wnt signaling pathways. One of the bioactive plant extracts identified in this screen - Jasminum gilgianum, an Oleaceae species native to Papua New Guinea - induced ectopic tails during zebrafish embryonic development. As ectopic tail formation occurs when BMP or non-canonical Wnt signaling is inhibited during the tail protrusion process, we suspected a constituent of this extract to act as a modulator of these pathways. A bioassay-guided isolation was carried out on the basis of this zebrafish phenotype, identifying para-coumaric acid methyl ester (pCAME) as the active compound. We then performed an in-depth phenotypic analysis of pCAME-treated zebrafish embryos, including a tissue-specific marker analysis of the secondary tails. We found pCAME to synergize with the BMP-inhibitors dorsomorphin and LDN-193189 in inducing ectopic tails, and causing convergence-extension defects in compound-treated embryos. These results indicate that pCAME may interfere with non-canonical Wnt signaling. Inhibition of Jnk, a downstream target of Wnt/PCP signaling (via morpholino antisense knockdown and pharmacological inhibition with the kinase inhibitor SP600125) phenocopied pCAME-treated embryos. However, immunoblotting experiments revealed pCAME to not directly inhibit Jnk-mediated phosphorylation of c-Jun, suggesting additional targets of SP600125, and/or other pathways, as possibly being involved in the ectopic tail formation activity of pCAME. Further investigation of pCAME's mechanism of action will help determine this compound's pharmacological utility
    corecore