139 research outputs found
Electronic sculpting of ligand-GPCR subtype selectivity:the case of angiotensin II
GPCR subtypes possess distinct functional
and pharmacological profiles,
and thus development of subtype-selective ligands has immense therapeutic
potential. This is especially the case for the angiotensin receptor
subtypes AT1R and AT2R, where a functional negative control has been
described and AT2R activation highlighted as an important cancer drug
target. We describe a strategy to fine-tune ligand selectivity for
the AT2R/AT1R subtypes through electronic control of ligand aromatic-prolyl
interactions. Through this strategy an AT2R high affinity (<i>K</i><sub>i</sub> = 3 nM) agonist analogue that exerted 18,000-fold
higher selectivity for AT2R versus AT1R was obtained. We show that
this compound is a negative regulator of AT1R signaling since it is
able to inhibit MCF-7 breast carcinoma cellular proliferation in the
low nanomolar range
Structure and stability of p-cresol – xenon clathrate : Raman spectroscopy study
AbstractInteraction between p-cresol and xenon was studied by Raman spectroscopy. The main questions are crystal structure of resulting clathrate and its stability. The most informative regions of our spectra are those related to the O-H stretching vibrations, the aromatic ring vibrations between 900 and 800 cm⁻¹ and the lattice vibrations of the host. From obtained data and their analysis we confirmed formation of hexagonal rings of [···O-H⋯O-]₆ hydrogen bonds as the main structural motif of the clathrate cages and we estimated length of the O⋯O bridges of these bonds. We found evidence that the last factor is responsible for low stability of studied complex and for higher stability of similar clathrates formed by hydroquinone.Abstract
Interaction between p-cresol and xenon was studied by Raman spectroscopy. The main questions are crystal structure of resulting clathrate and its stability. The most informative regions of our spectra are those related to the O-H stretching vibrations, the aromatic ring vibrations between 900 and 800 cm⁻¹ and the lattice vibrations of the host. From obtained data and their analysis we confirmed formation of hexagonal rings of [···O-H⋯O-]₆ hydrogen bonds as the main structural motif of the clathrate cages and we estimated length of the O⋯O bridges of these bonds. We found evidence that the last factor is responsible for low stability of studied complex and for higher stability of similar clathrates formed by hydroquinone
¹²⁹Xe NMR analysis of pore structures and adsorption phenomena in rare-earth element phosphates
AbstractRare-earth elements (REEs) are indispensable in various applications ranging from catalysis to batteries and they are commonly found from phosphate minerals. Xenon is an excellent exogenous NMR probe for materials because it is inert and its ¹²⁹Xe chemical shift is very sensitive to its local physical or chemical environment. Here, we exploit, for the first time, ¹²⁹Xe NMR for the characterization of porous structures and adsorption properties of REE phosphates (REEPO₄). We study four different REEPO₄ samples (REE = La, Lu, Sm and Yb), including both light (La and Sm) and heavy (Lu and Yb) as well as diamagnetic (La and Lu) and paramagnetic (Sm and Yb) REEs. ¹²⁹Xe resonances are very sensitive to the porous structures and moisture content of the REEPO₄ samples. In the samples treated at a lower temperature (80 °C), free water hinders the access of hydrophobic xenon into small mesopores, but the treatment at a higher temperature (200 °C) removes the free water and allows xenon to explore the mesopores. Based on a standard two-site exchange model analysis of the variable-temperature ¹²⁹Xe chemical shifts, as well as its proposed, novel modification for paramagnetic materials, the average mesopore sizes were determined. The size was the largest (79 nm) for the La sample with mixed monazite (70%) and rhabdophane (30%) phases and the smallest (6 nm) for the Yb sample with pure xenotime phase. The mesopore sizes of the Lu and Yb samples (12 and 6 nm) differed by a factor of two regardless of their similar xenotime phase. The ¹²⁹Xe NMR analysis revealed that the heats of adsorption of the samples are similar, varying between 8.7 and 10.1 kJ/mol. For diamagnetic samples, computational modelling confirmed the order of magnitude of the chemical shifts of Xe adsorbed on surfaces and therefore the validity of the two-site exchange model analysis. Overall, ¹²⁹Xe NMR provides exceptionally versatile information about the pore structures and adsorption properties of REEPO₄ materials, which may be very useful for developing the extraction processes and applications of REEs.Abstract
Rare-earth elements (REEs) are indispensable in various applications ranging from catalysis to batteries and they are commonly found from phosphate minerals. Xenon is an excellent exogenous NMR probe for materials because it is inert and its ¹²⁹Xe chemical shift is very sensitive to its local physical or chemical environment. Here, we exploit, for the first time, ¹²⁹Xe NMR for the characterization of porous structures and adsorption properties of REE phosphates (REEPO₄). We study four different REEPO₄ samples (REE = La, Lu, Sm and Yb), including both light (La and Sm) and heavy (Lu and Yb) as well as diamagnetic (La and Lu) and paramagnetic (Sm and Yb) REEs. ¹²⁹Xe resonances are very sensitive to the porous structures and moisture content of the REEPO₄ samples. In the samples treated at a lower temperature (80 °C), free water hinders the access of hydrophobic xenon into small mesopores, but the treatment at a higher temperature (200 °C) removes the free water and allows xenon to explore the mesopores. Based on a standard two-site exchange model analysis of the variable-temperature ¹²⁹Xe chemical shifts, as well as its proposed, novel modification for paramagnetic materials, the average mesopore sizes were determined. The size was the largest (79 nm) for the La sample with mixed monazite (70%) and rhabdophane (30%) phases and the smallest (6 nm) for the Yb sample with pure xenotime phase. The mesopore sizes of the Lu and Yb samples (12 and 6 nm) differed by a factor of two regardless of their similar xenotime phase. The ¹²⁹Xe NMR analysis revealed that the heats of adsorption of the samples are similar, varying between 8.7 and 10.1 kJ/mol. For diamagnetic samples, computational modelling confirmed the order of magnitude of the chemical shifts of Xe adsorbed on surfaces and therefore the validity of the two-site exchange model analysis. Overall, ¹²⁹Xe NMR provides exceptionally versatile information about the pore structures and adsorption properties of REEPO₄ materials, which may be very useful for developing the extraction processes and applications of REEs
Recommended from our members
Examining the effects of sodium ions on the binding of antagonists to dopamine D2 and D3 receptors
Many G protein-coupled receptors have been shown to be sensitive to the presence of sodium ions (Na+). Using radioligand competition binding assays, we have examined and compared the effects of sodium ions on the binding affinities of a number of structurally diverse ligands at human dopamine D2 and dopamine D3 receptor subtypes, which are important therapeutic targets for the treatment of psychotic disorders. At both receptors, the binding affinities of the antagonists/inverse agonists SB-277011-A, L,741,626, GR 103691 and U 99194 were higher in the presence of sodium ions compared to those measured in the presence of the organic cation, N-methyl-D-glucamine, used to control for ionic strength. Conversely, the affinities of spiperone and (+)-butaclamol were unaffected by the presence of sodium ions. Interestingly, the binding of the antagonist/inverse agonist clozapine was affected by changes in ionic strength of the buffer used rather than the presence of specific cations. Similar sensitivities to sodium ions were seen at both receptors, suggesting parallel effects of sodium ion interactions on receptor conformation. However, no clear correlation between ligand characteristics, such as subtype selectivity, and sodium ion sensitivity were observed. Therefore, the properties which determine this sensitivity remain unclear. However these findings do highlight the importance of careful consideration of assay buffer composition for in vitro assays and when comparing data from different studies, and may indicate a further level of control for ligand binding in vivo
SSTT2018 Swansea University Experimental investigations on the failure of a coating-substrate compound by means of the C-specimen concept and the small punch test
In previous work at the Institute of Mechanics and Fluid Dynamics of the TU Bergakademie Freiberg the thermomechanical fatigue of corrosion protection coatings was investigated, which had been manufactured by high velocity oxygen fuel spraying (HVOF) of a nickel-base superalloy. The failure behaviour of this coating-substrate compound under thermomechanical cyclic service loading is characterised by the combination of multiple damage mechanisms. During the course of the project, two dominant damage mechanisms were identified, that result in a functional failure of the coating. The first significant damage mechanism is the formation of delamination areas between coating and substrate, which result in local coating spallings, if they reach a critical size. The second important damage mechanism is the initiation and the propagation of inter-particle cracks in the coating. Regarding the functionality of the corrosion-preventive coating, these cracks become critical if they extend across the whole layer thickness up to the substrate. In order to further investigate the interface delamination between coating and substrate, the so-called C-specimen concept (CSC) has been developed. The characterisation of the inter-particle failure of the pure coating on the other hand is realised by the small punch test (SPT). In this contribution, both possible sources of the coating-substrate compound failure behaviour are addressed and have been experimentally examined by the use of the CSC and the SPT. These tests were conducted with the purpose of building a sufficiently detailed experimental data base suitable for the parameter identification of cyclic cohesive zone-based failure models
Asymmetric DNA recognition by the OkrAI endonuclease, an isoschizomer of BamHI
Restriction enzymes share little or no sequence homology with the exception of isoschizomers, or enzymes that recognize and cleave the same DNA sequence. We present here the structure of a BamHI isoschizomer, OkrAI, bound to the same DNA sequence (TATGGATCCATA) as that cocrystallized with BamHI. We show that OkrAI is a more minimal version of BamHI, lacking not only the N- and C-terminal helices but also an internal 310 helix and containing β-strands that are shorter than those in BamHI. Despite these structural differences, OkrAI recognizes the DNA in a remarkably similar manner to BamHI, including asymmetric contacts via C-terminal ‘arms’ that appear to ‘compete’ for the minor groove. However, the arms are shorter than in BamHI. We observe similar DNA-binding affinities between OkrAI and BamHI but OkrAI has higher star activity (at 37°C) compared to BamHI. Together, the OkrAI and BamHI structures offer a rare opportunity to compare two restriction enzymes that work on exactly the same DNA substrate
Community guidelines for GPCR ligand bias: IUPHAR review 32
GPCRs modulate a plethora of physiological processes and mediate the effects of one-third of FDA-approved drugs. Depending on which ligand activates a receptor, it can engage different intracellular transducers. This ‘biased signalling’ paradigm requires that we now characterize physiological signalling not just by receptors but by ligand–receptor pairs. Ligands eliciting biased signalling may constitute better drugs with higher efficacy and fewer adverse effects. However, ligand bias is very complex, making reproducibility and description challenging. Here, we provide guidelines and terminology for any scientists to design and report ligand bias experiments. The guidelines will aid consistency and clarity, as the basic receptor research and drug discovery communities continue to advance our understanding and exploitation of ligand bias. Scientific insight, biosensors, and analytical methods are still evolving and should benefit from and contribute to the implementation of the guidelines, together improving translation from in vitro to disease-relevant in vivo models
Gas Uptake and Thermodynamics in Porous Liquids Elucidated by <sup>129</sup>Xe NMR.
We exploited 129Xe NMR to investigate xenon gas uptake and dynamics in a porous liquid formed by dissolving porous organic cages in a cavity-excluded solvent. Quantitative 129Xe NMR shows that when the amount of xenon added to the sample is lower than the amount of cages present (subsaturation), the porous liquid absorbs almost all xenon atoms from the gas phase, with 30% of the cages occupied with a Xe atom. A simple two-site exchange model enables an estimate of the chemical shift of 129Xe in the cages, which is in good agreement with the value provided by first-principles modeling. T2 relaxation times allow the determination of the exchange rate of Xe between the solvent and cage sites as well as the activation energies of the exchange. The 129Xe NMR analysis also enables determination of the free energy of confinement, and it shows that Xe binding is predominantly enthalpy-driven
Overload Effects During Fatigue Crack Growth in Nodular Cast Iron - simulation with an Extended Strip-yield Model
AbstractWithin this paper an extended strip-yield model for the simulation of fatigue crack growth in nodular cast iron under variable amplitude loading is presented. The model is based on the conventional strip-yield model and by using an additional boundary condition the formerly observed crack acceleration effects after applied overloads can be described. A comparison of experimental results and simulation shows the applicability of the extended strip-yield model for single spike overloads as well as for random load sequences
- …
