899 research outputs found
Nonlinear self-interaction of plane gravitational waves
Recently Mendonca and Cardoso [Phys. Rev. D, vol. 66, 104009 (2002)]
considered nonlinear gravitational wave packets propagating in flat space-time.
They concluded that the evolution equation - to third order in amplitude -
takes a similar form to what arises in nonlinear optics. Based on this
equation, the authors found that nonlinear gravitational waves exhibit
self-phase modulation and high harmonic generation leading to frequency
up-shifting and spectral energy dilution of the gravitational wave energy. In
this Brief Report we point out the fact - a possibility that seems to have been
overlooked by Mendonca and Cardoso - that the nonlinear terms in the evolution
equation cancels and, hence, that there is no amplitude evolution of the pulse.
Finally we discuss scenarios where these nonlinearities may play a role.Comment: 2 pages, to appear in Phys. Rev.
Interaction between gravitational waves and plasma waves in the Vlasov description
The nonlinear interaction between electromagnetic, electrostatic and
gravitational waves in a Vlasov plasma is reconsidered. By using a orthonormal
tetrad description the three-wave coupling coefficients are computed. Comparing
with previous results, it is found that the present theory leads to algebraic
expression that are much reduced, as compared to those computed using a
coordinate frame formalism. Furthermore, here we calculate the back-reaction on
the gravitational waves, and a simple energy conservation law is deduced in the
limit of a cold plasma.Comment: 9 pages, uses jpp.cl
Nonlinear coupled Alfv\'{e}n and gravitational waves
In this paper we consider nonlinear interaction between gravitational and
electromagnetic waves in a strongly magnetized plasma. More specifically, we
investigate the propagation of gravitational waves with the direction of
propagation perpendicular to a background magnetic field, and the coupling to
compressional Alfv\'{e}n waves. The gravitational waves are considered in the
high frequency limit and the plasma is modelled by a multifluid description. We
make a self-consistent, weakly nonlinear analysis of the Einstein-Maxwell
system and derive a wave equation for the coupled gravitational and
electromagnetic wave modes. A WKB-approximation is then applied and as a result
we obtain the nonlinear Schr\"{o}dinger equation for the slowly varying wave
amplitudes. The analysis is extended to 3D wave pulses, and we discuss the
applications to radiation generated from pulsar binary mergers. It turns out
that the electromagnetic radiation from a binary merger should experience a
focusing effect, that in principle could be detected.Comment: 20 pages, revtex4, accepted in PR
Resonant interaction between gravitational waves, electromagnetic waves and plasma flows
In magnetized plasmas gravitational and electromagnetic waves may interact
coherently and exchange energy between themselves and with plasma flows. We
derive the wave interaction equations for these processes in the case of waves
propagating perpendicular or parallel to the plasma background magnetic field.
In the latter case, the electromagnetic waves are taken to be circularly
polarized waves of arbitrary amplitude. We allow for a background drift flow of
the plasma components which increases the number of possible evolution
scenarios. The interaction equations are solved analytically and the
characteristic time scales for conversion between gravitational and
electromagnetic waves are found. In particular, it is shown that in the
presence of a drift flow there are explosive instabilities resulting in the
generation of gravitational and electromagnetic waves. Conversely, we show that
energetic waves can interact to accelerate particles and thereby \emph{produce}
a drift flow. The relevance of these results for astrophysical and cosmological
plasmas is discussed.Comment: 12 pages, 1 figure, typos corrected and numerical example adde
Transverse Wave Propagation in Relativistic Two-fluid Plasmas in de Sitter Space
We investigate transverse electromagnetic waves propagating in a plasma in
the de Sitter space. Using the 3+1 formalism we derive the relativistic
two-fluid equations to take account of the effects due to the horizon and
describe the set of simultaneous linear equations for the perturbations. We use
a local approximation to investigate the one-dimensional radial propagation of
Alfv\'en and high frequency electromagnetic waves and solve the dispersion
relation for these waves numerically.Comment: 19 pages, 12 figure
Spatially resolved stress measurements in materials with polarization-sensitive optical coherence tomography: image acquisition and processing aspects
We demonstrate that polarization-sensitive optical coherence tomography
(PS-OCT) is suitable to map the stress distribution within materials in a
contactless and non-destructive way. In contrast to transmission
photoelasticity measurements the samples do not have to be transparent but can
be of scattering nature. Denoising and analysis of fringe patterns in single
PS-OCT retardation images are demonstrated to deliver the basis for a
quantitative whole-field evaluation of the internal stress state of samples
under investigation.Comment: 10 pages, 6 figures; Copyright: Blackwell Publishing Ltd 2008; The
definitive version is available at: www.blackwell-synergy.co
Recommended from our members
Global Analysis of Predicted G Protein-Coupled Receptor Genes in the Filamentous Fungus, Neurospora crassa.
G protein-coupled receptors (GPCRs) regulate facets of growth, development, and environmental sensing in eukaryotes, including filamentous fungi. The largest predicted GPCR class in these organisms is the Pth11-related, with members similar to a protein required for disease in the plant pathogen Magnaporthe oryzae. However, the Pth11-related class has not been functionally studied in any filamentous fungal species. Here, we analyze phenotypes in available mutants for 36 GPCR genes, including 20 Pth11-related, in the model filamentous fungus Neurospora crassa. We also investigate patterns of gene expression for all 43 predicted GPCR genes in available datasets. A total of 17 mutants (47%) possessed at least one growth or developmental phenotype. We identified 18 mutants (56%) with chemical sensitivity or nutritional phenotypes (11 uniquely), bringing the total number of mutants with at least one defect to 28 (78%), including 15 mutants (75%) in the Pth11-related class. Gene expression trends for GPCR genes correlated with the phenotypes observed for many mutants and also suggested overlapping functions for several groups of co-transcribed genes. Several members of the Pth11-related class have phenotypes and/or are differentially expressed on cellulose, suggesting a possible role for this gene family in plant cell wall sensing or utilization
Charged multifluids in general relativity
The exact 1+3 covariant dynamical fluid equations for a multi-component
plasma, together with Maxwell's equations are presented in such a way as to
make them suitable for a gauge-invariant analysis of linear density and
velocity perturbations of the Friedmann-Robertson-Walker model. In the case
where the matter is described by a two component plasma where thermal effects
are neglected, a mode representing high-frequency plasma oscillations is found
in addition to the standard growing and decaying gravitational instability
picture. Further applications of these equations are also discussed.Comment: 14 pages (example added), to appear in Class. Quantum Gra
- …
