448 research outputs found

    Circular solution of two unequal mass particles in post-Minkowski approximation

    Full text link
    A Fokker action for post-Minkowski approximation with the first post-Newtonian correction is introduced in our previous paper, and a solution for the helically symmetric circular orbit is obtained. We present supplemental results for the circular solution of two unequal mass point-particles. Circular solutions for selected mass ratios are found numerically, and analytic formulas in the extreme mass ratio limit are derived. The leading terms of the analytic formulas agree with the first post-Newtonian formulas in this limit.Comment: 4 pages, 4 figures, 4/27/0

    Gravitational Waves from the Merger of Binary Neutron Stars in a Fully General Relativistic Simulation

    Get PDF
    We performed 3D numerical simulations of the merger of equal-mass binary neutron stars in full general relativity using a new large scale supercomputer. We take the typical grid size as (505,505,253) for (x,y,z) and the maximum grid size as (633,633,317). These grid numbers enable us to put the outer boundaries of the computational domain near the local wave zone and hence to calculate gravitational waveforms of good accuracy (within 10\sim 10% error) for the first time. To model neutron stars, we adopt a Γ\Gamma-law equation of state in the form P=(Γ1)ρϵP=(\Gamma-1)\rho\epsilon, where P, ρ\rho, \varep and Γ\Gamma are the pressure, rest mass density, specific internal energy, and adiabatic constant. It is found that gravitational waves in the merger stage have characteristic features that reflect the formed objects. In the case that a massive, transient neutron star is formed, its quasi-periodic oscillations are excited for a long duration, and this property is reflected clearly by the quasi-periodic nature of waveforms and the energy luminosity. In the case of black hole formation, the waveform and energy luminosity are likely damped after a short merger stage. However, a quasi-periodic oscillation can still be seen for a certain duration, because an oscillating transient massive object is formed during the merger. This duration depends strongly on the initial compactness of neutron stars and is reflected in the Fourier spectrum of gravitational waves. To confirm our results and to calibrate the accuracy of gravitational waveforms, we carried out a wide variety of test simulations, changing the resolution and size of the computational domain.Comment: 40 pages; pubslihed in Prog. Theor. Phys. 107 (2002), 26

    The dynamics of the radiative envelope of rapidly rotating stars. I. A spherical Boussinesq model

    Full text link
    Context: The observations of rapidly rotating stars are increasingly detailed and precise thanks to interferometry and asteroseismology; two-dimensional models taking into account the hydrodynamics of these stars are very much needed. Aims: A model for studying the dynamics of baroclinic stellar envelope is presented. Methods: This models treats the stellar fluid at the Boussinesq approximation and assumes that it is contained in a rigid spherical domain. The temperature field along with the rotation of the system generate the baroclinic flow. Results: We manage to give an analytical solution to the asymptotic problem at small Ekman and Prandtl numbers. We show that, provided the Brunt-Vaisala frequency profile is smooth enough, differential rotation of a stably stratified envelope takes the form a fast rotating pole and a slow equator while it is the opposite in a convective envelope. We also show that at low Prandtl numbers and without μ\mu-barriers, the jump in viscosity at the core-envelope boundary generates a shear layer staying along the tangential cylinder of the core. Its role in mixing processes is discussed. Conclusions: Such a model provides an interesting tool for investigating the fluid dynamics of rotating stars in particular for the study of the various instabilities affecting baroclinic flows or, even more, of a dynamo effect.Comment: 17 pages, accepted in Astronomy and Astrophysic

    Parametric analysis of flux creep-flow model by using genetic algorithm

    Get PDF
    The pinning parameters for numerical calculation based on the flux creep-flow model are determined by using genetic algorithm (GA), which has been applied to many practical determination for parameters. Several estimation functions which describe the distance between the experimental and calculated results by GA were proposed, and the difference between the results were calculated. It is found that the pinning parameters of the flux creep-flow model are successfully deduced by GA. The difference between the calculated and experimental results and the calculation time are found to be largely depended on the estimation functions.Proceedings of the 24th International Symposium on Superconductivity (ISS 2011), October 24-26, 2011, Tokyo, Japa

    Numerical models of irrotational binary neutron stars in general relativity

    Get PDF
    We report on general relativistic calculations of quasiequilibrium configurations of binary neutron stars in circular orbits with zero vorticity. These configurations are expected to represent realistic situations as opposed to corotating configurations. The Einstein equations are solved under the assumption of a conformally flat spatial 3-metric (Wilson-Mathews approximation). The velocity field inside the stars is computed by solving an elliptical equation for the velocity scalar potential. Results are presented for sequences of constant baryon number (evolutionary sequences). Although the central density decreases much less with the binary separation than in the corotating case, it still decreases. Thus, no tendency is found for the stars to individually collapse to black hole prior to merger.Comment: Minor corrections, improved figure, 5 pages, REVTeX, Phys. Rev. Lett. in pres

    A relativistic formalism for computation of irrotational binary stars in quasi equilibrium states

    Get PDF
    We present relativistic hydrostatic equations for obtaining irrotational binary neutron stars in quasi equilibrium states in 3+1 formalism. Equations derived here are different from those previously given by Bonazzola, Gourgoulhon, and Marck, and have a simpler and more tractable form for computation in numerical relativity. We also present hydrostatic equations for computation of equilibrium irrotational binary stars in first post-Newtonian order.Comment: 5 pages, corrected eqs.(2.10), (2.11) and (3.1

    Various features of quasiequilibrium sequences of binary neutron stars in general relativity

    Full text link
    Quasiequilibrium sequences of binary neutron stars are numerically calculated in the framework of the Isenberg-Wilson-Mathews (IWM) approximation of general relativity. The results are presented for both rotation states of synchronized spins and irrotational motion, the latter being considered as the realistic one for binary neutron stars just prior to the merger. We assume a polytropic equation of state and compute several evolutionary sequences of binary systems composed of different-mass stars as well as identical-mass stars with adiabatic indices gamma=2.5, 2.25, 2, and 1.8. From our results, we propose as a conjecture that if the turning point of binding energy (and total angular momentum) locating the innermost stable circular orbit (ISCO) is found in Newtonian gravity for some value of the adiabatic index gamma_0, that of the ADM mass (and total angular momentum) should exist in the IWM approximation of general relativity for the same value of the adiabatic index.Comment: Text improved, some figures changed or deleted, new table, 38 pages, 31 figures, accepted for publication in Phys. Rev.
    corecore