82 research outputs found

    Coherent description of electrical and thermal impurity-and-phonon limited transport in simple metals

    Full text link
    The electrical resistivity, thermoelectric power and electronic thermal conductivity of simple (isotropic) metals are studied in a uniform way. Starting from results of a variational solution of the Boltzmann equation, a generalized Matthiessen rule is used in order to superpose the inelastic (or not) electron-phonon and elastic electron-impurity scattering cross sections ("matrix elements"). The temperature dependence relative to these processes is given through simple functions and physical parameters over the usually investigated range of temperature for each transport coefficient. The coherence of such results is emphasized.Comment: 22 pages, 5 figures; to appear in International Journal of Modern Physics

    Screening effects in the electron-optical phonon interaction

    Full text link
    We show that recently reported unusual hardening of optical phonons renormalized by the electron-phonon interaction is due to the neglect of screening effects. When the electron-ion interaction is properly screened optical phonons soften in three dimension. It is important that for short-wavelength optical phonons screening is static while for long-wavelength optical phonons screening is dynamic. In two-dimensional and one-dimensional cases due to crossing of the nonperturbed optical mode with gapless plasmons the spectrum of renormalized optical phonon-plasmon mode shows split momentum dependence.Comment: 7 page

    Effects of Electron-Electron and Electron-Phonon Interactions in Weakly Disordered Conductors and Heterostuctures

    Full text link
    We investigate quantum corrections to the conductivity due to the interference of electron-electron (electron-phonon) scattering and elastic electron scattering in weakly disordered conductors. The electron-electron interaction results in a negative T2lnTT^2 \ln T-correction in a 3D conductor. In a quasi-two-dimensional conductor, d<vF/Td < v_F/T (dd is the thickness, vFv_F is the Fermi velocity), with 3D electron spectrum this correction is linear in temperature and differs from that for 2D electrons (G. Zala et. al., Phys. Rev.B {\bf 64}, 214204 (2001)) by a numerical factor. In a quasi-one-dimensional conductor, temperature-dependent correction is proportional to T2T^2. The electron interaction via exchange of virtual phonons also gives T2T^2-correction. The contribution of thermal phonons interacting with electrons via the screened deformation potential results in T4T^4-term and via unscreened deformation potential results in T2T^2-term. The interference contributions dominate over pure electron-phonon scattering in a wide temperature range, which extends with increasing disorder.Comment: 6 pages, 2figure

    Coulomb blockade in quantum dots under AC pumping

    Full text link
    We study conductance through a quantum dot under Coulomb blockade conditions in the presence of an external periodic perturbation. The stationary state is determined by the balance between the heating of the dot electrons by the perturbation and cooling. We analyze two cooling mechanisms: electron exchange with the cold contacts and emission of phonons. Together with the usual linear Ohmic heating of the dot electrons we consider possible effects of dynamic localization. The combination of the abovementioned factors may result in a drastic change of the shape of the Coulomb blockade peak with respect to the usual equilibrium one.Comment: 12 pages, 8 figure

    Non-ohmicity and energy relaxation in diffusive 2D metals

    Full text link
    We analyze current-voltage characteristics taken on Au-doped indium-oxide films. By fitting a scaling function to the data, we extract the electron-phonon scattering rate as function of temperature, which yields a quadratic dependence of the electron-phonon scattering rate on temperature from 1K down to 0.28K. The origin of this enhanced electron-phonon scattering rate is ascribed to the mechanism proposed by Sergeev and Mitin.Comment: 7 pages, 6 figure

    Recombination limited energy relaxation in a BCS superconductor

    Full text link
    We study quasiparticle energy relaxation at sub-kelvin temperatures by injecting hot electrons into an aluminium island and measuring the energy flux from electrons into phonons both in the superconducting and in the normal state. The data show strong reduction of the flux at low temperatures in the superconducting state, in qualitative agreement with the presented quasiclassical theory for clean superconductors. Quantitatively, the energy flux exceeds that from the theory both in the superconducting and in the normal state, possibly suggesting an enhanced or additional relaxation process

    Magnetoresistance, noise properties and the Koshino-Taylor effect in the quasi-1D oxide KRu_4O_8

    Full text link
    The low temperature electronic and galvanomagnetic transport properties of the low dimensional oxide KRu_4O_8 are experimentally considered. A quadratic temperature variation of the resistivity is observed to be proportional to the residual resistivity. It shows the role of inelastic electron scattering against impurities, i.e. a large Koshino-Taylor effect, rather than a consequence of strong electronic correlations. In the same temperature range, the Kohler rule is not fulfilled. The resistance noise increases also sharply, possibly due to a strong coupling of carriers with lattice fluctuations in this low dimensional compound.Comment: accepted for publication in Europhysics Lette
    corecore