5,990 research outputs found
Strong spin relaxation length dependence on electric field gradients
We discuss the influence of electrical effects on spin transport, and in
particular the propagation and relaxation of spin polarized electrons in the
presence of inhomogeneous electric fields. We show that the spin relaxation
length strongly depends on electric field gradients, and that significant
suppression of electron spin polarization can occur as a result thereof. A
discussion in terms of a drift-diffusion picture, and self-consistent numerical
calculations based on a Boltzmann-Poisson approach shows that the spin
relaxation length in fact can be of the order of the charge screening length.Comment: 4 pages, 3 figures, to be presented at PASPSI
Remote information concentration by GHZ state and by bound entangled state
We compare remote information concentration by a maximally entangled GHZ
state with by an unlockable bound entangled state. We find that the bound
entangled state is as useful as the GHZ state, even do better than the GHZ
state in the context of communication security.Comment: 4 pages,1 figur
Hilbert space structure of covariant loop quantum gravity
We investigate the Hilbert space in the Lorentz covariant approach to loop
quantum gravity. We restrict ourselves to the space where all area operators
are simultaneously diagonalizable, assuming that it exists. In this sector
quantum states are realized by a generalization of spin network states based on
Lorentz Wilson lines projected on irreducible representations of an SO(3)
subgroup. The problem of infinite dimensionality of the unitary Lorentz
representations is absent due to this projection. Nevertheless, the projection
preserves the Lorentz covariance of the Wilson lines so that the symmetry is
not broken. Under certain conditions the states can be thought as functions on
a homogeneous space. We define the inner product as an integral over this
space. With respect to this inner product the spin networks form an orthonormal
basis in the investigated sector. We argue that it is the only relevant part of
a larger state space arising in the approach. The problem of the
noncommutativity of the Lorentz connection is solved by restriction to the
simple representations. The resulting structure shows similarities with the
spin foam approach.Comment: 20 pages, RevTE
Search for WW and WZ production in lepton plus jets final state at CDF
We present a search for WW and WZ production in final states that contain a charged lepton (electron or muon) and at least two jets, produced in sqrt(s) = 1.96 TeV ppbar collisions at the Fermilab Tevatron, using data corresponding to 1.2 fb-1 of integrated luminosity collected with the CDF II detector. Diboson production in this decay channel has yet to be observed at hadron colliders due to the large single W plus jets background. An artificial neural network has been developed to increase signal sensitivity, as compared with an event selection based on conventional cuts. We set a 95% confidence level upper limit of sigma_{WW}* BR(W->lnu,W->jets)+ sigma_{WZ}*BR(W->lnu,Z->jets)We present a search for WW and WZ production in final states that contain a charged lepton (electron or muon) and at least two jets, produced in √s=1.96 TeV pp̅ collisions at the Fermilab Tevatron, using data corresponding to 1.2 fb-1 of integrated luminosity collected with the CDF II detector. Diboson production in this decay channel has yet to be observed at hadron colliders due to the large single W plus jets background. An artificial neural network has been developed to increase signal sensitivity, as compared with an event selection based on conventional cuts. We set a 95% confidence level upper limit of σWW×BR(W→ℓνℓ,W→jets)+σWZ×BR(W→ℓνℓ,Z→jets)<2.88 pb, which is consistent with the standard model next-to-leading-order cross section calculation for this decay channel of 2.09±0.12 pb.Peer reviewe
Superconducting states in the tetrahedral compound PrOs4Sb12
We find possible superconducting states for tetrahedral (Th) symmetry
crystals with strong spin-orbit coupling using Landau theory. Additional
symmetry breaking within the superconducting state is considered. We discuss
nodes of the gap functions for the different states, secondary superconducting
order parameters and coupling to the elastic strain. By comparing our results
to experiments, we find that superconductivity in PrOs4Sb12 is best described
by the three-dimensional representations of point group Th.Comment: 9 pages, 2 figures. Expanded version submitted to Physical Review
Translocal imagination of Hong Kong connections: the shifting of Chow Yun-Fat's star image since 1997
Anyone who is interested in Hong Kong cinema must be familiar with one name: Chow Yun-fat (b. 1955). He rose to film stardom in the 1980s when Hong Kong cinema started to attract global attention beyond East Asia. During his early screen career, Chow established a star image as an urban citizen of modern Hong Kong through films such as A Better Tomorrow/Yingxiong bense (John Woo, 1986), City on Fire/Longhu fengyun (Ringo Lam, 1987), All About Ah-Long/A Lang de gushi (Johnnie To, 1989), God of Gamblers/Du shen (Wong Jing, 1989), and Hard Boiled/Lashou shentan (John Woo, 1992)
Spectral Properties of Quasiparticle Excitations Induced by Magnetic Moments in Superconductors
The consequences of localized, classical magnetic moments in superconductors
are explored and their effect on the spectral properties of the intragap bound
states is studied. Above a critical moment, a localized quasiparticle
excitation in an s-wave superconductor is spontaneously created near a magnetic
impurity, inducing a zero-temperature quantum transition. In this transition,
the spin quantum number of the ground state changes from zero to 1/2, while the
total charge remains the same. In contrast, the spin-unpolarized ground state
of a d-wave superconductor is found to be stable for any value of the magnetic
moment when the normal-state energy spectrum possesses particle-hole symmetry.
The effect of impurity scattering on the quasiparticle states is interpreted in
the spirit of relevant symmetries of the clean superconductor. The results
obtained by the non-self-consistent (T matrix) and the self-consistent
mean-field approximations are compared and qualitative agreement between the
two schemes is found in the regime where the coherence length is longer than
the Fermi length.Comment: to appear in Phys. Rev. B55, May 1st (1997
The ‘credibility paradox’ in China’s science communication: Views from scientific practitioners
In contrast to increasing debates on China’s rising status as a global scientific power, issues of China’s science communication remain under-explored. Based on 21 in-depth interviews in three cities, this article examines Chinese scientists’ accounts of the entangled web of influence which conditions the process of how scientific knowledge achieves (or fails to achieve) its civic authority. A main finding of this study is a ‘credibility paradox’ as a result of the over-politicisation of science and science communication in China. Respondents report that an absence of visible institutional endorsements renders them more public credibility and better communication outcomes. Thus, instead of exploiting formal channels of science communication, scientists interviewed were more keen to act as ‘informal risk communicators’ in grassroots and private events. Chinese scientists’ perspectives on how to earn public support of their research sheds light on the nature and impact of a ‘civic epistemology’ in an authoritarian state
On an Asymptotic Series of Ramanujan
An asymptotic series in Ramanujan's second notebook (Entry 10, Chapter 3) is
concerned with the behavior of the expected value of for large
where is a Poisson random variable with mean and
is a function satisfying certain growth conditions. We generalize this by
studying the asymptotics of the expected value of when the
distribution of belongs to a suitable family indexed by a convolution
parameter. Examples include the problem of inverse moments for distribution
families such as the binomial or the negative binomial.Comment: To appear, Ramanujan
Recommended from our members
Biomarker discovery and redundancy reduction towards classification using a multi-factorial MALDI-TOF MS T2DM mouse model dataset
Diabetes like many diseases and biological processes is not mono-causal. On the one hand multifactorial studies with complex experimental design are required for its comprehensive analysis. On the other hand, the data from these studies often include a substantial amount of redundancy such as proteins that are typically represented by a multitude of peptides. Coping simultaneously with both complexities (experimental and technological) makes data analysis a challenge for Bioinformatics
- …
