35,274 research outputs found
Using exploratory factor analysis in information system (IS) research
This paper is part of a field study that explored the impact of Information System implementation on Organisational Performance by examining the concept of IS effectiveness and by exploring how businesses arrive at the conclusion that the undertaking is successful or unsuccessful. Many statistical techniques have been used for the inference of conclusions. This paper will explain in brief the methodology followed and the exploratory factor analysis (EFA) conducted for the measurement of the construct if IS effectiveness. Following all tests on correlations and a number of extraction methods the final solution comprised 13 factors representing the independent variables and 4 factors representing the dependent variables. The results from our analysis provide insight into the IS evaluation field of research and provide new scales for the measurement of IS effectiveness
Effect of Nonlinearity on Adiabatic Evolution of Light
We investigate the effect of nonlinearity in a system described by an adiabatically evolving Hamiltonian. Experiments are conducted in a three-core waveguide structure that is adiabatically varying with distance, in analogy to the stimulated Raman adiabatic passage process in atomic physics. In the linear regime, the system exhibits an adiabatic power transfer between two waveguides which are not directly coupled, with negligible power recorded in the intermediate coupling waveguide. In the presence of nonlinearity the adiabatic light passage is found to critically depend on the excitation power. We show how this effect is related to the destruction of the dark state formed in this configuration
Recommended from our members
p22phox C242T Single-Nucleotide Polymorphism Inhibits Inflammatory Oxidative Damage to Endothelial Cells and Vessels.
BACKGROUND: The NADPH oxidase, by generating reactive oxygen species, is involved in the pathophysiology of many cardiovascular diseases and represents a therapeutic target for the development of novel drugs. A single-nucleotide polymorphism, C242T of the p22(phox) subunit of NADPH oxidase, has been reported to be negatively associated with coronary heart disease and may predict disease prevalence. However, the underlying mechanisms remain unknown. METHODS AND RESULTS: With the use of computer molecular modeling, we discovered that C242T single-nucleotide polymorphism causes significant structural changes in the extracellular loop of p22(phox) and reduces its interaction stability with Nox2 subunit. Gene transfection of human pulmonary microvascular endothelial cells showed that C242T p22(phox) significantly reduced Nox2 expression but had no significant effect on basal endothelial O2 (.-) production or the expression of Nox1 and Nox4. When cells were stimulated with tumor necrosis factor-α (or high glucose), C242T p22(phox) significantly inhibited tumor necrosis factor-α-induced Nox2 maturation, O2 (.-) production, mitogen-activated protein kinases and nuclear factor κB activation, and inflammation (all P<0.05). These C242T effects were further confirmed using p22(phox) short-hairpin RNA-engineered HeLa cells and Nox2(-/-) coronary microvascular endothelial cells. Clinical significance was investigated by using saphenous vein segments from non-coronary heart disease subjects after phlebotomies. TT (C242T) allele was common (prevalence of ≈22%) and, in comparison with CC, veins bearing TT allele had significantly lower levels of Nox2 expression and O2 (.-) generation in response to high-glucose challenge. CONCLUSIONS: C242T single-nucleotide polymorphism causes p22(phox) structural changes that inhibit endothelial Nox2 activation and oxidative response to tumor necrosis factor-α or high-glucose stimulation. C242T single-nucleotide polymorphism may represent a natural protective mechanism against inflammatory cardiovascular diseases
Rapid, learning-induced inhibitory synaptogenesis in murine barrel field
The structure of neurons changes during development and in response to injury or alteration in sensory experience. Changes occur in the number, shape, and dimensions of dendritic spines together with their synapses. However, precise data on these changes in response to learning are sparse. Here, we show using quantitative transmission electron microscopy that a simple form of learning involving mystacial vibrissae results in approximately 70% increase in the density of inhibitory synapses on spines of neurons located in layer IV barrels that represent the stimulated vibrissae. The spines contain one asymmetrical (excitatory) and one symmetrical (inhibitory) synapse (double-synapse spines), and their density increases threefold as a result of learning with no apparent change in the density of asymmetrical synapses. This effect seems to be specific for learning because pseudoconditioning (in which the conditioned and unconditioned stimuli are delivered at random) does not lead to the enhancement of symmetrical synapses but instead results in an upregulation of asymmetrical synapses on spines. Symmetrical synapses of cells located in barrels receiving the conditioned stimulus also show a greater concentration of GABA in their presynaptic terminals. These results indicate that the immediate effect of classical conditioning in the "conditioned" barrels is rapid, pronounced, and inhibitory
Tapasin gene polymorphism in systemic onset juvenile rheumatoid arthritis: a family-based case-control study
Juvenile rheumatoid arthritis (JRA) comprises a group of chronic systemic inflammatory disorders that primarily affect joints and can cause long-term disability. JRA is likely to be a complex genetic trait, or a series of such traits, with both genetic and environmental factors contributing to the risk for developing the disease and to its progression. The HLA region on the short arm of chromosome 6 has been intensively evaluated for genetic contributors to JRA, and multiple associations, and more recently linkage, has been detected. Other genes involved in innate and acquired immunity also map to near the HLA cluster on 6p, and it is possible that variation within these genes also confers risk for developing JRA. We examined the TPSN gene, which encodes tapasin, an endoplasmic reticulum chaperone that is involved in antigen processing, to elucidate its involvement, if any, in JRA. We employed both a case-control approach and the transmission disequilibrium test, and found linkage and association between the TPSN allele (Arg260) and the systemic onset subtype of JRA. Two independent JRA cohorts were used, one recruited from the Rheumatology Clinic at Cincinnati Children's Hospital Medical Center (82 simplex families) and one collected by the British Paediatric Rheumatology Group in London, England (74 simplex families). The transmission disequilibrium test for these cohorts combined was statistically significant (chi(2) = 4.2, one degree of freedom; P = 0.04). Linkage disequilibrium testing between the HLA alleles that are known to be associated with systemic onset JRA did not reveal linkage disequilibrium with the Arg260 allele, either in the Cincinnati systemic onset JRA cohort or in 113 Caucasian healthy individuals. These results suggest that there is a weak association between systemic onset JRA and the TPSN polymorphism, possibly due to linkage disequilibrium with an as yet unknown susceptibility allele in the centromeric part of chromosome 6
Price-based friendly jamming in a MISO interference wiretap channel
© 2016 IEEE. In this paper, we expand the scope of PHY-layer security by investigating TX-based friendly jamming (FJ) for the wiretap channel in multi-link settings. For the single-link scenario, creating a TX-based FJ is an effective and practical method in improving the secrecy rate. In a multi-link setting, several information signals must be transmitted simultaneously. Thus, the design must guarantee that the FJ signal of a given transmitter does not interfere with unintended but legitimate receivers. Under the assumption of exact knowledge of the eavesdropping channel, we first propose a distributed price-based approach to improve the secrecy sum-rate of a two-link network with one eavesdropper while satisfying an information-rate constraint for both link. Simulations show that price-based FJ control outperforms greedy FJ, and is close to the performance of a centralized approach. Next, we propose a method based on mixed strategic games that can offer robust solutions to the distributed secrecy sum-rate maximization problem under the assumption of an unknown eavesdropping channel. Lastly, we use simulations to show that in addition to outperforming the greedy approach, our robust optimization also satisfies practical network considerations. In particular, the transmission time for the robust optimization can be determined flexibly to match the channel's coherence time
Jamming attack on in-band full-duplex communications: Detection and countermeasures
© 2016 IEEE. Recent advances in the design of in-band full-duplex (IBFD) radios promise to double the throughput of a wireless link. However, IBFD-capable nodes are more vulnerable to jamming attacks than their out-of-band full-duplex (OBFD) counterparts, and any advantages offered by them over the OBFD nodes can be jeopardized by such attacks. A jammer needs to attack both the uplink and the downlink channels to completely break the communication link between two OBFD nodes. In contrast, he only needs to jam one channel (used for both uplink and downlink) in the case of two IBFD nodes. Even worse, a jammer with the IBFD capability can learn the transmitters' activity while injecting interference, allowing it to react instantly with the transmitter's strategies. In this paper, we investigate frequency hopping (FH) technique for countering jamming attacks in the context of IBFD wireless radios. Specifically, we develop an optimal strategy for IBFD radios to combat an IBFD reactive sweep jammer. First, we introduce two operational modes for IBFD radios: transmission reception and transmission-detection. These modes are intended to boost the anti-jamming capability of IBFD radios. We then jointly optimize the decision of when to switch between the modes and when to hop to a new channel using Markov decision processes. Numerical investigations show that our policy significantly improves the throughput of IBFD nodes under jamming attacks
Systematic study of the PDC speckle structure for quantum imaging applications
Sub shot noise imaging of weak object by exploiting Parametric Down Converted
light represents a very interesting technological development. A precise
characterization of PDC speckle structure in dependence of pump beam parameters
is a fundamental tool for this application. In this paper we present a first
set of data addressed to this purpose
- …
