1,825 research outputs found
Effect of quantum confinement on exciton-phonon interactions
We investigate the homogeneous linewidth of localized type-I excitons in
type-II GaAs/AlAs superlattices. These localizing centers represent the
intermediate case between quasi-two-dimensional (Q2D) and
quasi-zero-dimensional localizations. The temperature dependence of the
homogeneous linewidth is obtained with high precision from
micro-photoluminescence spectra. We confirm the reduced interaction of the
excitons with their environment with decreasing dimensionality except for the
coupling to LO-phonons. The low-temperature limit for the linewidth of these
localized excitons is five times smaller than that of Q2D excitons. The
coefficient of exciton-acoustic-phonon interaction is 5 ~ 6 times smaller than
that of Q2D excitons. An enhancement of the average exciton-LO-phonon
interaction by localization is found in our sample. But this interaction is
very sensitive to the detailed structure of the localizing centers.Comment: 6 pages, 4 figure
Single and vertically coupled type II quantum dots in a perpendicular magnetic field: exciton groundstate properties
The properties of an exciton in a type II quantum dot are studied under the
influence of a perpendicular applied magnetic field. The dot is modelled by a
quantum disk with radius , thickness and the electron is confined in the
disk, whereas the hole is located in the barrier. The exciton energy and
wavefunctions are calculated using a Hartree-Fock mesh method. We distinguish
two different regimes, namely (the hole is located at the radial
boundary of the disk) and (the hole is located above and below the
disk), for which angular momentum transitions are predicted with
increasing magnetic field. We also considered a system of two vertically
coupled dots where now an extra parameter is introduced, namely the interdot
distance . For each and for a sufficient large magnetic field,
the ground state becomes spontaneous symmetry broken in which the electron and
the hole move towards one of the dots. This transition is induced by the
Coulomb interaction and leads to a magnetic field induced dipole moment. No
such symmetry broken ground states are found for a single dot (and for three
vertically coupled symmetric quantum disks). For a system of two vertically
coupled truncated cones, which is asymmetric from the start, we still find
angular momentum transitions. For a symmetric system of three vertically
coupled quantum disks, the system resembles for small the pillar-like
regime of a single dot, where the hole tends to stay at the radial boundary,
which induces angular momentum transitions with increasing magnetic field. For
larger the hole can sit between the disks and the state
remains the groundstate for the whole -region.Comment: 11 pages, 16 figure
Multiband theory of multi-exciton complexes in self-assembled quantum dots
We report on a multiband microscopic theory of many-exciton complexes in
self-assembled quantum dots. The single particle states are obtained by three
methods: single-band effective-mass approximation, the multiband
method, and the tight-binding method. The electronic structure calculations are
coupled with strain calculations via Bir-Pikus Hamiltonian. The many-body wave
functions of electrons and valence holes are expanded in the basis of
Slater determinants. The Coulomb matrix elements are evaluated using statically
screened interaction for the three different sets of single particle states and
the correlated -exciton states are obtained by the configuration interaction
method. The theory is applied to the excitonic recombination spectrum in
InAs/GaAs self-assembled quantum dots. The results of the single-band
effective-mass approximation are successfully compared with those obtained by
using the of and tight-binding methods.Comment: 10 pages, 8 figure
Theoretical study of finite temperature spectroscopy in van der Waals clusters. I. Probing phase changes in CaAr_n
The photoabsorption spectra of calcium-doped argon clusters CaAr_n are
investigated at thermal equilibrium using a variety of theoretical and
numerical tools. The influence of temperature on the absorption spectra is
estimated using the quantum superposition method for a variety of cluster sizes
in the range 6<=n<=146. At the harmonic level of approximation, the absorption
intensity is calculated through an extension of the Gaussian theory by Wadi and
Pollak [J. Chem. Phys. vol 110, 11890 (1999)]. This theory is tested on simple,
few-atom systems in both the classical and quantum regimes for which highly
accurate Monte Carlo data can be obtained. By incorporating quantum anharmonic
corrections to the partition functions and respective weights of the isomers,
we show that the superposition method can correctly describe the
finite-temperature spectroscopic properties of CaAr_n systems. The use of the
absorption spectrum as a possible probe of isomerization or phase changes in
the argon cluster is discussed at the light of finite-size effects.Comment: 17 pages, 9 figure
Formation and stability of self-assembled coherent islands in highly mismatched heteroepitaxy
We study the energetics of island formation in Stranski-Krastanow growth
within a parameter-free approach. It is shown that an optimum island size
exists for a given coverage and island density if changes in the wetting layer
morphology after the 3D transition are properly taken into account. Our
approach reproduces well the experimental island size dependence on coverage,
and indicates that the critical layer thickness depends on growth conditions.
The present study provides a new explanation for the (frequently found) rather
narrow size distribution of self-assembled coherent islands.Comment: 4 pages, 5 figures, In print, Phys. Rev. Lett. Other related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
Equilibrium shapes and energies of coherent strained InP islands
The equilibrium shapes and energies of coherent strained InP islands grown on
GaP have been investigated with a hybrid approach that has been previously
applied to InAs islands on GaAs. This combines calculations of the surface
energies by density functional theory and the bulk deformation energies by
continuum elasticity theory. The calculated equilibrium shapes for different
chemical environments exhibit the {101}, {111}, {\=1\=1\=1} facets and a (001)
top surface. They compare quite well with recent atomic-force microscopy data.
Thus in the InP/GaInP-system a considerable equilibration of the individual
islands with respect to their shapes can be achieved. We discuss the
implications of our results for the Ostwald ripening of the coherent InP
islands. In addition we compare strain fields in uncapped and capped islands.Comment: 10 pages including 6 figures. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
Resonant nature of phonon-induced damping of Rabi oscillations in quantum dots
Optically controlled coherent dynamics of charge (excitonic) degrees of
freedom in a semiconductor quantum dot under the influence of lattice dynamics
(phonons) is discussed theoretically. We show that the dynamics of the lattice
response in the strongly non-linear regime is governed by a semiclassical
resonance between the phonon modes and the optically driven dynamics. We stress
on the importance of the stability of intermediate states for the truly
coherent control.Comment: 4 pages, 2 figures; final version; moderate changes, new titl
Entanglement of single-photons and chiral phonons in atomically thin WSe
Quantum entanglement is a fundamental phenomenon which, on the one hand,
reveals deep connections between quantum mechanics, gravity and the space-time;
on the other hand, has practical applications as a key resource in quantum
information processing. While it is routinely achieved in photon-atom
ensembles, entanglement involving the solid-state or macroscopic objects
remains challenging albeit promising for both fundamental physics and
technological applications. Here, we report entanglement between collective,
chiral vibrations in two-dimensional (2D) WSe host --- chiral phonons (CPs)
--- and single-photons emitted from quantum dots (QDs) present in it. CPs which
carry angular momentum were recently observed in WSe and are a
distinguishing feature of the underlying honeycomb lattice. The entanglement
results from a "which-way" scattering process, involving an optical excitation
in a QD and doubly-degenerate CPs, which takes place via two indistinguishable
paths. Our unveiling of entanglement involving a macroscopic, collective
excitation together with strong interaction between CPs and QDs in 2D materials
opens up ways for phonon-driven entanglement of QDs and engineering chiral or
non-reciprocal interactions at the single-photon level
- …
