13,128 research outputs found
Reaching Approximate Byzantine Consensus with Multi-hop Communication
We address the problem of reaching consensus in the presence of Byzantine
faults. In particular, we are interested in investigating the impact of
messages relay on the network connectivity for a correct iterative approximate
Byzantine consensus algorithm to exist. The network is modeled by a simple
directed graph. We assume a node can send messages to another node that is up
to hops away via forwarding by the intermediate nodes on the routes, where
is a natural number. We characterize the necessary and
sufficient topological conditions on the network structure. The tight
conditions we found are consistent with the tight conditions identified for
, where only local communication is allowed, and are strictly weaker for
. Let denote the length of a longest path in the given network. For
and undirected graphs, our conditions hold if and only if and the node-connectivity of the given graph is at least , where
is the total number of nodes and is the maximal number of Byzantine
nodes; and for and directed graphs, our conditions is equivalent to
the tight condition found for exact Byzantine consensus.
Our sufficiency is shown by constructing a correct algorithm, wherein the
trim function is constructed based on investigating a newly introduced minimal
messages cover property. The trim function proposed also works over
multi-graphs.Comment: 24 pages, 1 figure. arXiv admin note: text overlap with
arXiv:1203.188
Production of large-particle-size monodisperse latexes
The research program achieved two objectives: (1) it has refined and extended the experimental techniques for preparing monodisperse latexes in quantity on the ground up to a particle diameter of 10 microns; and (2) it has demonstrated that a microgravity environment can be used to grow monodisperse latexes to larger sizes, where the limitations in size have yet to be defined. The experimental development of the monodisperse latex reactor (MLR) and the seeded emulsion polymerizations carried out in the laboratory prototype of the flight hardware, as a function of the operational parameters is discussed. The emphasis is directed towards the measurement, interpretation, and modeling of the kinetics of seeded emulsion polymerization and successive seeded emulsion polymerization. The recipe development of seeded emulsion polymerization as a function of particle size is discussed. The equilibrium swelling of latex particles with monomers was investigated both theoretically and experimentally. Extensive studies are reported on both the type and concentration of initiators, surfactants, and inhibitors, which eventually led to the development of the flight recipes. The experimental results of the flight experiments are discussed, as well as the experimental development of inhibition of seeded emulsion polymerization in terms of time of inhibition and the effect of inhibitors on the kinetics of polymerization
Laser pulse annealing of ion-implanted GaAs
GaAs single-crystals wafers are implanted at room temperature with 400-keV Te + ions to a dose of 1×10^15 cm^–2 to form an amorphous surface layer. The recrystallization of this layer is investigated by backscattering spectrometry and transmission electron microscopy after transient annealing by Q-switched ruby laser irradiation. An energy density threshold of about 1.0 J/cm^2 exists above which the layer regrows epitaxially. Below the threshold the layer is polycrystalline; the grain size increases as the energy density approaches threshold. The results are analogous to those reported for the elemental semiconductors, Si and Ge. The threshold value observed is in good agreement with that predicted by the simple model successfully applied previously to Si and Ge
Achieving competitive advantage through supply chain agility under uncertainty:A novel multi-criteria decision-making structure
Enhanced Decay, Inclusive Production, and the Gluon Anomaly
The experimental hint of large is linked to the
penguins via the gluon anomaly. Using running in the
-- coupling, the standard penguin alone seems
insufficient, calling for the need of dipole at 10% level from new
physics, which could also resolve the and charm counting
problems. The intereference of standard and new physics contributions may
result in direct CP asymmetries at 10% level, which could be observed soon at B
Factories.Comment: 12 pages, revtex, 3 figs. (version to appear in Phys. Rev. Lett.
Exclusive Hadronic D Decays to eta' and eta
Hadronic decay modes and
are studied in the generalized
factorization approach. Form factors for transitions
are carefully evaluated by taking into account the wave function normalization
of the eta and eta'. The predicted branching ratios are generally in agreement
with experiment except for and
; the calculated decay rates for the first two decay modes
are too small by an order of magnitude. We show that the weak decays and followed by resonance-induced final-state
interactions (FSI), which are amenable technically, are able to enhance the
branching ratios of and dramatically
without affecting the agreement between theory and experiment for and . We argue that it is difficult to understand
the observed large decay rates of and
simultaneously; FSI, W-annihilation and the production of excess eta' from
gluons are not helpful in this regard. The large discrepancy between the
factorization hypothesis and experiment for the ratio of
and remains as an enigma.Comment: 15 pages, 1 figure, to appear in Phys. Rev. D. Form factors for D to
eta and eta' transitions are slightly change
- …
