423,353 research outputs found
Thiadizoloquinoxaline-Based Low-Bandgap Conjugated Polymers as Ambipolar Semiconductors for Organic Field Effect Transistors
Theoretical and Experimental Adsorption Studies of Polyelectrolytes on an Oppositely Charged Surface
Using self-assembly techniques, x-ray reflectivity measurements, and computer
simulations, we study the effective interaction between charged polymer rods
and surfaces. Long-time Brownian dynamics simulations are used to measure the
effective adhesion force acting on the rods in a model consisting of a planar
array of uniformly positively charged, stiff rods and a negatively charged
planar substrate in the presence of explicit monovalent counterions and added
monovalent salt ions in a continuous, isotropic dielectric medium. This
electrostatic model predicts an attractive polymer-surface adhesion force that
is weakly dependent on the bulk salt concentration and that shows fair
agreement with a Debye-Huckel approximation for the macroion interaction at
salt concentrations near 0.1 M. Complementary x-ray reflectivity experiments on
poly(diallyldimethyl ammonium) chloride (PDDA) monolayer films on the native
oxide of silicon show that monolayer structure, electron density, and surface
roughness are likewise independent of the bulk ionic strength of the solution.Comment: Revtex, prb format; uses amssym
Recommended from our members
Neuroinflammation is a putative target for the prevention and treatment of perioperative neurocognitive disorders.
IntroductionThe demographics of aging of the surgical population has increased the risk for perioperative neurocognitive disorders in which trauma-induced neuroinflammation plays a pivotal role.Sources of dataAfter determining the scope of the review, the authors used PubMed with select phrases encompassing the words in the scope. Both preclinical and clinical reports were considered.Areas of agreementNeuroinflammation is a sine qua non for development of perioperative neurocognitive disorders.Areas of controversyWhat is the best method for ameliorating trauma-induced neuroinflammation while preserving inflammation-based wound healing.Growing pointsThis review considers how to prepare for and manage the vulnerable elderly surgical patient through the entire spectrum, from preoperative assessment to postoperative period.Areas timely for developing researchWhat are the most effective and safest interventions for preventing and/or reversing Perioperative Neurocognitive Disorders
Joint Symbol-Level Precoding and Reflecting Designs for IRS-Enhanced MU-MISO Systems
Intelligent reflecting surfaces (IRSs) have emerged as a revolutionary solution to enhance wireless communications by changing propagation environment in a cost-effective and hardware-efficient fashion. In addition, symbol-level precoding (SLP) has attracted considerable attention recently due to its advantages in converting multiuser interference (MUI) into useful signal energy. Therefore, it is of interest to investigate the employment of IRS in symbol-level precoding systems to exploit MUI in a more effective way by manipulating the multiuser channels. In this article, we focus on joint symbol-level precoding and reflecting designs in IRS-enhanced multiuser multiple-input single-output (MU-MISO) systems. Both power minimization and quality-of-service (QoS) balancing problems are considered. In order to solve the joint optimization problems, we develop an efficient iterative algorithm to decompose them into separate symbol-level precoding and block-level reflecting design problems. An efficient gradient-projection-based algorithm is utilized to design the symbol-level precoding and a Riemannian conjugate gradient (RCG)-based algorithm is employed to solve the reflecting design problem. Simulation results demonstrate the significant performance improvement introduced by the IRS and illustrate the effectiveness of our proposed algorithms
Molecular dynamics of folding of secondary structures in Go-type models of proteins
We consider six different secondary structures of proteins and construct two
types of Go-type off-lattice models: with the steric constraints and without.
The basic aminoacid-aminoacid potential is Lennard Jones for the native
contacts and a soft repulsion for the non-native contacts. The interactions are
chosen to make the target secondary structure be the native state of the
system. We provide a thorough equilibrium and kinetic characterization of the
sequences through the molecular dynamics simulations with the Langevin noise.
Models with the steric constraints are found to be better folders and to be
more stable, especially in the case of the -structures. Phononic spectra
for vibrations around the native states have low frequency gaps that correlate
with the thermodynamic stability. Folding of the secondary structures proceeds
through a well defined sequence of events. For instance, -helices fold
from the ends first. The closer to the native state, the faster establishment
of the contacts. Increasing the system size deteriorates the folding
characteristics. We study the folding times as a function of viscous friction
and find a regime of moderate friction with the linear dependence. We also
consider folding when one end of a structure is pinned which imitates
instantaneous conditions when a protein is being synthesized. We find that,
under such circumstances, folding of helices is faster and of the
-sequences slower.Comment: REVTeX, 14 pages, EPS figures included, JCP in pres
- …
