118,476 research outputs found

    Suppressing decoherence and improving entanglement by quantum-jump-based feedback control in two-level systems

    Full text link
    We study the quantum-jump-based feedback control on the entanglement shared between two qubits with one of them subject to decoherence, while the other qubit is under the control. This situation is very relevant to a quantum system consisting of nuclear and electron spins in solid states. The possibility to prolong the coherence time of the dissipative qubit is also explored. Numerical simulations show that the quantum-jump-based feedback control can improve the entanglement between the qubits and prolong the coherence time for the qubit subject directly to decoherence

    Entropy and specific heat for open systems in steady states

    Full text link
    The fundamental assumption of statistical mechanics is that the system is equally likely in any of the accessible microstates. Based on this assumption, the Boltzmann distribution is derived and the full theory of statistical thermodynamics can be built. In this paper, we show that the Boltzmann distribution in general can not describe the steady state of open system. Based on the effective Hamiltonian approach, we calculate the specific heat, the free energy and the entropy for an open system in steady states. Examples are illustrated and discussed.Comment: 4 pages, 7 figure

    Remark on approximation in the calculation of the primordial spectrum generated during inflation

    Get PDF
    We re-examine approximations in the analytical calculation of the primordial spectrum of cosmological perturbation produced during inflation. Taking two inflation models (chaotic inflation and natural inflation) as examples, we numerically verify the accuracy of these approximations.Comment: 10 pages, 6 figures, to appear in PR

    Coupling of Josephson Currents in Quantum Hall Bilayers

    Full text link
    We study ring shaped (Corbino) devices made of bilayer two-dimensional electron gases in the total filling factor one quantized Hall phase which is considered to be a coherent BCS-like state of interlayer excitons. Identical Josephson currents are observed at the two edges while only a negligible conductance between them is found. The maximum Josephson current observed at either edge can be controlled by passing a second interlayer Josephson current at the other edge. Due to the large electric resistance between the two edges, the interaction between them can only be mediated by the neutral interlayer excitonic groundstate

    Nonequilibrium thermal entanglement in three-qubit XXXX model

    Full text link
    Making use of the master equation and effective Hamiltonian approach, we investigate the steady state entanglement in a three-qubit XXXX model. Both symmetric and nonsymmetric qubit-qubit couplings are considered. The system (the three qubits) is coupled to two bosonic baths at different temperatures. We calculate the steady state by the effective Hamiltonian approach and discuss the dependence of the steady state entanglement on the temperatures and couplings. The results show that for symmetric qubit-qubit couplings, the entanglements between the nearest neighbor are equal, independent of the temperatures of the two baths. The maximum of the entanglement arrives at TL=TRT_L=T_R. For nonsymmetric qubit-qubit couplings, however, the situation is totally different. The baths at different temperatures would benefit the entanglement and the entanglements between the nearest neighbors are no longer equal. By examining the probability distribution of each eigenstate in the steady state, we present an explanation for these observations. These results suggest that the steady entanglement can be controlled by the temperature of the two baths.Comment: Comments are welcom

    Warm Jupiters are less lonely than hot Jupiters: close neighbours

    Get PDF
    Exploiting the Kepler transit data, we uncover a dramatic distinction in the prevalence of sub-Jovian companions, between systems that contain hot Jupiters (periods inward of 10 days) and those that host warm Jupiters (periods between 10 and 200 days). Hot Jupiters, with the singular exception of WASP-47b, do not have any detectable inner or outer planetary companions (with periods inward of 50 days and sizes down to 2REarth2 R_{\rm Earth}). Restricting ourselves to inner companions, our limits reach down to 1REarth1 R_{\rm Earth}. In stark contrast, half of the warm Jupiters are closely flanked by small companions. Statistically, the companion fractions for hot and warm Jupiters are mutually exclusive, particularly in regard to inner companions. The high companion fraction of warm Jupiters also yields clues to their formation. The warm Jupiters that have close-by siblings should have low orbital eccentricities and low mutual inclinations. The orbital configurations of these systems are reminiscent of those of the low-mass, close-in planetary systems abundantly discovered by the Kepler mission. This, and other arguments, lead us to propose that these warm Jupiters are formed in-situ. There are indications that there may be a second population of warm Jupiters with different characteristics. In this picture, WASP-47b could be regarded as the extending tail of the in-situ warm Jupiters into the hot Jupiter region, and does not represent the generic formation route for hot Jupiters.Comment: 12 pages, 7 figures, accepted by Ap

    Balanced electronic detection of displacement in nanoelectromechanical systems

    Get PDF
    We describe a broadband radio frequency balanced bridge technique for electronic detection of displacement in nanoelectromechanical systems (NEMS). With its two-port actuation-detection configuration, this approach generates a background-nulled electromotive force in a dc magnetic field that is proportional to the displacement of the NEMS resonator. We demonstrate the effectiveness of the technique by detecting small impedance changes originating from NEMS electromechanical resonances that are accompanied by large static background impedances at very high frequencies. This technique allows the study of important experimental systems such as doped semiconductor NEMS and may provide benefits to other high frequency displacement transduction circuits
    corecore