288,832 research outputs found

    Subnanosecond magnetization reversal of magnetic nanoparticle driven by chirp microwave field pulse

    Full text link
    We investigate the magnetization reversal of single-domain magnetic nanoparticle driven by linear down-chirp microwave magnetic field pulse. Numerical simulations based on the Landau-Lifshitz-Gilbert equation reveal that solely down-chirp pulse is capable of inducing subnanosecond magnetization reversal. With a certain range of initial frequency and chirp rate, the required field amplitude is much smaller than that of constant-frequency microwave field. The fast reversal is because the down-chirp microwave field acts as an energy source and sink for the magnetic particle before and after crossing over the energy barrier, respectively. Applying a spin-polarized current additively to the system further reduces the microwave field amplitude. Our findings provide a new way to realize low-cost and fast magnetization reversal

    Thermal gradient driven domain wall dynamics

    Get PDF
    The issue of whether a thermal gradient acts like a magnetic field or an electric current in the domain wall (DW) dynamics is investigated. Broadly speaking, magnetization control knobs can be classified as energy-driving or angular-momentum driving forces. DW propagation driven by a static magnetic field is the best-known example of the former in which the DW speed is proportional to the energy dissipation rate, and the current-driven DW motion is an example of the latter. Here we show that DW propagation speed driven by a thermal gradient can be fully explained as the angular momentum transfer between thermally generated spin current and DW. We found DW-plane rotation speed increases as DW width decreases. Both DW propagation speed along the wire and DW-plane rotation speed around the wire decrease with the Gilbert damping. These facts are consistent with the angular momentum transfer mechanism, but are distinct from the energy dissipation mechanism. We further show that magnonic spin-transfer torque (STT) generated by a thermal gradient has both damping-like and field-like components. By analyzing DW propagation speed and DW-plane rotation speed, the coefficient ( \b{eta}) of the field-like STT arising from the non-adiabatic process, is obtained. It is found that \b{eta} does not depend on the thermal gradient; increases with uniaxial anisotropy K_(||) (thinner DW); and decreases with the damping, in agreement with the physical picture that a larger damping or a thicker DW leads to a better alignment between the spin-current polarization and the local magnetization, or a better adiabaticity

    Blaschke's problem for timelike surfaces in pseudo-Riemannian space forms

    Full text link
    We show that isothermic surfaces and S-Willmore surfaces are also the solutions to the corresponding Blaschke's problem for both spacelike and timelike surfaces in pseudo-Riemannian space forms. For timelike surfaces both Willmore and isothermic, we obtain a description by minimal surfaces similar to the classical results of Thomsen.Comment: 10 page

    Magnetic and Transport Properties in CoSr2Y1xCaxCu2O7CoSr_2Y_{1-x}Ca_xCu_2O_7 (xx=0\sim0.4)

    Full text link
    Magnetic and transport properties of CoSr2Y1xCaxCu2O7Co Sr_2 Y_{1-x} Ca_x Cu_2 O_7 (x=00.4x=0 \sim 0.4) system have been investigated. A broad maximum in M(T) curve, indicative of low-dimensional antiferromagnetic ordering originated from CoO1+δCoO_{1+\delta} layers, is observed in Ca-free sample. With increasing Ca doping level up to 0.2, the M(T) curve remains almost unchanged, while resistivity is reduced by three orders. Higher Ca doping level leads to a drastic change of magnetic properties. In comparison with the samples with x=0.00.2x=0.0 \sim 0.2, the temperature corresponding to the maximum of M(T) is much lowered for the sample xx=0.3. The sample xx=0.4 shows a small kink instead of a broad maximum and a weak ferromagnetic feature. The electrical transport behavior is found to be closely related to magnetic properties for the sample xx=0.2, 0.25, 0.3, 0.4. It suggests that CoO1+δCoO_{1+\delta} layers are involved in charge transport in addition to conducting CuO2CuO_2 planes to interpret the correlation between magnetism and charge transport. X-ray photoelectron spectroscopy studies give an additional evidence of the the transfer of the holes into the CoO1+δCoO_{1+\delta} charge reservoir

    Degree of the generalized Pl\"ucker embedding of a Quot scheme and Quantum cohomology

    Full text link
    We compute the degree of the generalized Pl\"ucker embedding κ\kappa of a Quot scheme XX over \PP^1. The space XX can also be considered as a compactification of the space of algebraic maps of a fixed degree from \PP^1 to the Grassmanian Grass(m,n)\rm{Grass}(m,n). Then the degree of the embedded variety κ(X)\kappa (X) can be interpreted as an intersection product of pullbacks of cohomology classes from Grass(m,n)\rm{Grass}(m,n) through the map ψ\psi that evaluates a map from \PP^1 at a point x\in \PP^1. We show that our formula for the degree verifies the formula for these intersection products predicted by physicists through Quantum cohomology~\cite{va92}~\cite{in91}~\cite{wi94}. We arrive at the degree by proving a version of the classical Pieri's formula on the variety XX, using a cell decomposition of a space that lies in between XX and κ(X)\kappa (X).Comment: 18 pages, Latex documen
    corecore