4,438 research outputs found

    Axial and Vector Correlator Mixing in Hot and Dense Hadronic Matter

    Get PDF
    We study the manifestations of chiral symmetry restoration which have a significance for the parity mixing. Restricting to pions and nucleons we establish a formalism for the expression of the vector correlator, which displays the mixing of the axial correlator into the vector one and unifies the cases of the heat bath and the dense medium. We give examples of mixing cross-sections. We also establish a link between the energy integrated mixing cross-sections and the pion scalar density which governs the quenching factors of coupling constants, such as the pion decay one, as well as the quark condensate evolution.Comment: 12 pages, Latex, 4 PostScript Figure

    High resolution imaging of young M-type stars of the solar neighborhood: Probing the existence of companions down to the mass of Jupiter

    Full text link
    Context. High contrast imaging is a powerful technique to search for gas giant planets and brown dwarfs orbiting at separation larger than several AU. Around solar-type stars, giant planets are expected to form by core accretion or by gravitational instability, but since core accretion is increasingly difficult as the primary star becomes lighter, gravitational instability would be the a probable formation scenario for yet-to-be-found distant giant planets around a low-mass star. A systematic survey for such planets around M dwarfs would therefore provide a direct test of the efficiency of gravitational instability. Aims. We search for gas giant planets orbiting around late-type stars and brown dwarfs of the solar neighborhood. Methods. We obtained deep high resolution images of 16 targets with the adaptive optic system of VLT-NACO in the Lp band, using direct imaging and angular differential imaging. This is currently the largest and deepest survey for Jupiter-mass planets around Mdwarfs. We developed and used an integrated reduction and analysis pipeline to reduce the images and derive our 2D detection limits for each target. The typical contrast achieved is about 9 magnitudes at 0.5" and 11 magnitudes beyond 1". For each target we also determine the probability of detecting a planet of a given mass at a given separation in our images. Results. We derived accurate detection probabilities for planetary companions, taking into account orbital projection effects, with in average more than 50% probability to detect a 3MJup companion at 10AU and a 1.5MJup companion at 20AU, bringing strong constraints on the existence of Jupiter-mass planets around this sample of young M-dwarfs.Comment: Accepted for publication in A&

    Signal Transmission Across Tile Assemblies: 3D Static Tiles Simulate Active Self-Assembly by 2D Signal-Passing Tiles

    Full text link
    The 2-Handed Assembly Model (2HAM) is a tile-based self-assembly model in which, typically beginning from single tiles, arbitrarily large aggregations of static tiles combine in pairs to form structures. The Signal-passing Tile Assembly Model (STAM) is an extension of the 2HAM in which the tiles are dynamically changing components which are able to alter their binding domains as they bind together. For our first result, we demonstrate useful techniques and transformations for converting an arbitrarily complex STAM+^+ tile set into an STAM+^+ tile set where every tile has a constant, low amount of complexity, in terms of the number and types of ``signals'' they can send, with a trade off in scale factor. Using these simplifications, we prove that for each temperature τ>1\tau>1 there exists a 3D tile set in the 2HAM which is intrinsically universal for the class of all 2D STAM+^+ systems at temperature τ\tau (where the STAM+^+ does not make use of the STAM's power of glue deactivation and assembly breaking, as the tile components of the 2HAM are static and unable to change or break bonds). This means that there is a single tile set UU in the 3D 2HAM which can, for an arbitrarily complex STAM+^+ system SS, be configured with a single input configuration which causes UU to exactly simulate SS at a scale factor dependent upon SS. Furthermore, this simulation uses only two planes of the third dimension. This implies that there exists a 3D tile set at temperature 22 in the 2HAM which is intrinsically universal for the class of all 2D STAM+^+ systems at temperature 11. Moreover, we show that for each temperature τ>1\tau>1 there exists an STAM+^+ tile set which is intrinsically universal for the class of all 2D STAM+^+ systems at temperature τ\tau, including the case where τ=1\tau = 1.Comment: A condensed version of this paper will appear in a special issue of Natural Computing for papers from DNA 19. This full version contains proofs not seen in the published versio

    Chiral Symmetry Restoration and Parity Mixing

    Get PDF
    We derive the expressions of the vector and axial current from a chiral Lagrangian restricted to nucleons and pions. They display mixing terms between the axial and vector currents. We study the modifications in the nuclear medium of the coupling constants of the axial current, namely the pion decay constant and the nucleonic axial one due to the requirements of chiral symmetry. We express the renormalizations in terms of the local scalar pion density. The latter also governs the quark condensate evolu- tion and we discuss the link between this evolution and the renormaliza- tions. In the case of the nucleon axial coupling constant this renormali- zation corresponds to a new type of exchange currents, with two exchanged pions. We give an estimate for the resulting quenching. Although moderate it helps explaining the quenching experimentally observed.Comment: Latex, 15 pages. Several references and one figure added. New discussion of some points has been included. Treatment of the renormali- zation of the nucleon axial coupling constant has been develope

    Pion Scalar Density and Chiral Symmetry Restoration at Finite Temperature and Density

    Get PDF
    This paper is devoted to the evaluation of the pionic scalar density at finite temperature and baryonic density. We express the latter effect in terms of the nuclear response evaluated in the random phase approxima- tion. We discuss the density and temperature evolution of the pionic density which governs the quark condensate evolution. Numerical evalua- tions are performed.Comment: 13 pages, Latex File, 10 eps Figure

    Direct imaging constraints on planet populations detected by microlensing

    Full text link
    Results from gravitational microlensing suggested the existence of a large population of free-floating planetary mass objects. The main conclusion from this work was partly based on constraints from a direct imaging survey. This survey determined upper limits for the frequency of stars that harbor giant exoplanets at large orbital separations. Aims. We want to verify to what extent upper limits from direct imaging do indeed constrain the microlensing results. We examine the current derivation of the upper limits used in the microlensing study and re-analyze the data from the corresponding imaging survey. We focus on the mass and semi-major axis ranges that are most relevant in context of the microlensing results. We also consider new results from a recent M-dwarf imaging survey as these objects are typically the host stars for planets detected by microlensing. We find that the upper limits currently applied in context of the microlensing results are probably underestimated. This means that a larger fraction of stars than assumed may harbor gas giant planets at larger orbital separations. Also, the way the upper limit is currently used to estimate the fraction of free-floating objects is not strictly correct. If the planetary surface density of giant planets around M-dwarfs is described as df_Planet ~ a^beta da, we find that beta ~ 0.5 - 0.6 is consistent with results from different observational studies probing semi-major axes between ~0.03 - 30 AU. Having a higher upper limit on the fraction of stars that may have gas giant planets at orbital separations probed by the microlensing data implies that more of the planets detected in the microlensing study are potentially bound to stars rather than free-floating. The current observational data are consistent with a rising planetary surface density for giant exoplanets around M-dwarfs out to ~30 AU.Comment: Accepted for publication in A&A as Research Note, 3 page

    Discovery of a Low-Mass Companion to the F7V star HD 984

    Get PDF
    We report the discovery of a low-mass companion to the nearby (d = 47 pc) F7V star HD 984. The companion is detected 0.19" away from its host star in the L' band with the Apodizing Phase Plate on NaCo/VLT and was recovered by L'-band non-coronagraphic imaging data taken a few days later. We confirm the companion is co-moving with the star with SINFONI integral field spectrograph H+K data. We present the first published data obtained with SINFONI in pupil-tracking mode. HD 984 has been argued to be a kinematic member of the 30 Myr-old Columba group, and its HR diagram position is not altogether inconsistent with being a ZAMS star of this age. By consolidating different age indicators, including isochronal age, coronal X-ray emission, and stellar rotation, we independently estimate a main sequence age of 115±\pm85 Myr (95% CL) which does not rely on this kinematic association. The mass of directly imaged companions are usually inferred from theoretical evolutionary tracks, which are highly dependent on the age of the star. Based on the age extrema, we demonstrate that with our photometric data alone, the companion's mass is highly uncertain: between 33 and 96 MJup_{\rm Jup} (0.03-0.09 M_{\odot}) using the COND evolutionary models. We compare the companion's SINFONI spectrum with field dwarf spectra to break this degeneracy. Based on the slope and shape of the spectrum in the H-band, we conclude that the companion is an M6.0±0.56.0\pm0.5 dwarf. The age of the system is not further constrained by the companion, as M dwarfs are poorly fit on low-mass evolutionary tracks. This discovery emphasizes the importance of obtaining a spectrum to spectral type companions around F-stars.Comment: Accepted for publication in MNRAS, 10 pages, 5 figure

    Constraints on nuclear matter properties from QCD susceptibilities

    Full text link
    We establish the interrelation between the QCD scalar response of the nuclear medium and its response to a scalar probe coupled to nucleons, such as the scalar meson responsible for the nuclear binding. The relation that we derive applies at the nucleonic as well as at the nuclear levels. Non trivial consequences follow. In particular it opens the possibility of relating medium effects in the scalar meson exchange or three-body forces of nuclear physics to QCD lattice studies of the nucleon massComment: Submitted to EPJ

    Laboratory validation of the dual-zone phase mask coronagraph in broadband light at the high-contrast imaging THD-testbed

    Full text link
    Specific high contrast imaging instruments are mandatory to characterize circumstellar disks and exoplanets around nearby stars. Coronagraphs are commonly used in these facilities to reject the diffracted light of an observed star and enable the direct imaging and spectroscopy of its circumstellar environment. One important property of the coronagraph is to be able to work in broadband light. Among several proposed coronagraphs, the dual-zone phase mask coronagraph is a promising solution for starlight rejection in broadband light. In this paper, we perform the first validation of this concept in laboratory. First, we recall the principle of the dual-zone phase mask coronagraph. Then, we describe the high-contrast imaging THD testbed, the manufacturing of the components and the quality-control procedures. Finally, we study the sensitivity of our coronagraph to low-order aberrations (inner working angle and defocus) and estimate its contrast performance. Our experimental broadband light results are compared with numerical simulations to check agreement with the performance predictions. With the manufactured prototype and using a dark hole technique based on the self-coherent camera, we obtain contrast levels down to 21082\,10^{-8} between 5 and 17λ0/D\,\lambda_0/D in monochromatic light (640 nm). We also reach contrast levels of 41084\,10^{-8} between 7 and 17λ0/D\lambda_0/D in broadband (λ0=675\lambda_0=675 nm, Δλ=250\Delta\lambda=250 nm and Δλ/λ0=40\Delta\lambda / \lambda_0 = 40 %), which demonstrates the excellent chromatic performance of the dual-zone phase mask coronagraph. The performance reached by the dual-zone phase mask coronagraph is promising for future high-contrast imaging instruments that aim at detecting and spectrally characterizing old or light gaseous planets.Comment: 9 pages, 16 figure
    corecore