4,438 research outputs found
Axial and Vector Correlator Mixing in Hot and Dense Hadronic Matter
We study the manifestations of chiral symmetry restoration which have a
significance for the parity mixing. Restricting to pions and nucleons we
establish a formalism for the expression of the vector correlator, which
displays the mixing of the axial correlator into the vector one and unifies the
cases of the heat bath and the dense medium. We give examples of mixing
cross-sections. We also establish a link between the energy integrated mixing
cross-sections and the pion scalar density which governs the quenching factors
of coupling constants, such as the pion decay one, as well as the quark
condensate evolution.Comment: 12 pages, Latex, 4 PostScript Figure
High resolution imaging of young M-type stars of the solar neighborhood: Probing the existence of companions down to the mass of Jupiter
Context. High contrast imaging is a powerful technique to search for gas
giant planets and brown dwarfs orbiting at separation larger than several AU.
Around solar-type stars, giant planets are expected to form by core accretion
or by gravitational instability, but since core accretion is increasingly
difficult as the primary star becomes lighter, gravitational instability would
be the a probable formation scenario for yet-to-be-found distant giant planets
around a low-mass star. A systematic survey for such planets around M dwarfs
would therefore provide a direct test of the efficiency of gravitational
instability. Aims. We search for gas giant planets orbiting around late-type
stars and brown dwarfs of the solar neighborhood. Methods. We obtained deep
high resolution images of 16 targets with the adaptive optic system of VLT-NACO
in the Lp band, using direct imaging and angular differential imaging. This is
currently the largest and deepest survey for Jupiter-mass planets around
Mdwarfs. We developed and used an integrated reduction and analysis pipeline to
reduce the images and derive our 2D detection limits for each target. The
typical contrast achieved is about 9 magnitudes at 0.5" and 11 magnitudes
beyond 1". For each target we also determine the probability of detecting a
planet of a given mass at a given separation in our images. Results. We derived
accurate detection probabilities for planetary companions, taking into account
orbital projection effects, with in average more than 50% probability to detect
a 3MJup companion at 10AU and a 1.5MJup companion at 20AU, bringing strong
constraints on the existence of Jupiter-mass planets around this sample of
young M-dwarfs.Comment: Accepted for publication in A&
Signal Transmission Across Tile Assemblies: 3D Static Tiles Simulate Active Self-Assembly by 2D Signal-Passing Tiles
The 2-Handed Assembly Model (2HAM) is a tile-based self-assembly model in
which, typically beginning from single tiles, arbitrarily large aggregations of
static tiles combine in pairs to form structures. The Signal-passing Tile
Assembly Model (STAM) is an extension of the 2HAM in which the tiles are
dynamically changing components which are able to alter their binding domains
as they bind together. For our first result, we demonstrate useful techniques
and transformations for converting an arbitrarily complex STAM tile set
into an STAM tile set where every tile has a constant, low amount of
complexity, in terms of the number and types of ``signals'' they can send, with
a trade off in scale factor.
Using these simplifications, we prove that for each temperature
there exists a 3D tile set in the 2HAM which is intrinsically universal for the
class of all 2D STAM systems at temperature (where the STAM does
not make use of the STAM's power of glue deactivation and assembly breaking, as
the tile components of the 2HAM are static and unable to change or break
bonds). This means that there is a single tile set in the 3D 2HAM which
can, for an arbitrarily complex STAM system , be configured with a
single input configuration which causes to exactly simulate at a scale
factor dependent upon . Furthermore, this simulation uses only two planes of
the third dimension. This implies that there exists a 3D tile set at
temperature in the 2HAM which is intrinsically universal for the class of
all 2D STAM systems at temperature . Moreover, we show that for each
temperature there exists an STAM tile set which is intrinsically
universal for the class of all 2D STAM systems at temperature ,
including the case where .Comment: A condensed version of this paper will appear in a special issue of
Natural Computing for papers from DNA 19. This full version contains proofs
not seen in the published versio
Chiral Symmetry Restoration and Parity Mixing
We derive the expressions of the vector and axial current from a chiral
Lagrangian restricted to nucleons and pions. They display mixing terms between
the axial and vector currents. We study the modifications in the nuclear medium
of the coupling constants of the axial current, namely the pion decay constant
and the nucleonic axial one due to the requirements of chiral symmetry. We
express the renormalizations in terms of the local scalar pion density. The
latter also governs the quark condensate evolu- tion and we discuss the link
between this evolution and the renormaliza- tions. In the case of the nucleon
axial coupling constant this renormali- zation corresponds to a new type of
exchange currents, with two exchanged pions. We give an estimate for the
resulting quenching. Although moderate it helps explaining the quenching
experimentally observed.Comment: Latex, 15 pages. Several references and one figure added. New
discussion of some points has been included. Treatment of the renormali-
zation of the nucleon axial coupling constant has been develope
Pion Scalar Density and Chiral Symmetry Restoration at Finite Temperature and Density
This paper is devoted to the evaluation of the pionic scalar density at
finite temperature and baryonic density. We express the latter effect in terms
of the nuclear response evaluated in the random phase approxima- tion. We
discuss the density and temperature evolution of the pionic density which
governs the quark condensate evolution. Numerical evalua- tions are performed.Comment: 13 pages, Latex File, 10 eps Figure
Direct imaging constraints on planet populations detected by microlensing
Results from gravitational microlensing suggested the existence of a large
population of free-floating planetary mass objects. The main conclusion from
this work was partly based on constraints from a direct imaging survey. This
survey determined upper limits for the frequency of stars that harbor giant
exoplanets at large orbital separations. Aims. We want to verify to what extent
upper limits from direct imaging do indeed constrain the microlensing results.
We examine the current derivation of the upper limits used in the microlensing
study and re-analyze the data from the corresponding imaging survey. We focus
on the mass and semi-major axis ranges that are most relevant in context of the
microlensing results. We also consider new results from a recent M-dwarf
imaging survey as these objects are typically the host stars for planets
detected by microlensing. We find that the upper limits currently applied in
context of the microlensing results are probably underestimated. This means
that a larger fraction of stars than assumed may harbor gas giant planets at
larger orbital separations. Also, the way the upper limit is currently used to
estimate the fraction of free-floating objects is not strictly correct. If the
planetary surface density of giant planets around M-dwarfs is described as
df_Planet ~ a^beta da, we find that beta ~ 0.5 - 0.6 is consistent with results
from different observational studies probing semi-major axes between ~0.03 - 30
AU. Having a higher upper limit on the fraction of stars that may have gas
giant planets at orbital separations probed by the microlensing data implies
that more of the planets detected in the microlensing study are potentially
bound to stars rather than free-floating. The current observational data are
consistent with a rising planetary surface density for giant exoplanets around
M-dwarfs out to ~30 AU.Comment: Accepted for publication in A&A as Research Note, 3 page
Discovery of a Low-Mass Companion to the F7V star HD 984
We report the discovery of a low-mass companion to the nearby (d = 47 pc) F7V
star HD 984. The companion is detected 0.19" away from its host star in the L'
band with the Apodizing Phase Plate on NaCo/VLT and was recovered by L'-band
non-coronagraphic imaging data taken a few days later. We confirm the companion
is co-moving with the star with SINFONI integral field spectrograph H+K data.
We present the first published data obtained with SINFONI in pupil-tracking
mode. HD 984 has been argued to be a kinematic member of the 30 Myr-old Columba
group, and its HR diagram position is not altogether inconsistent with being a
ZAMS star of this age. By consolidating different age indicators, including
isochronal age, coronal X-ray emission, and stellar rotation, we independently
estimate a main sequence age of 11585 Myr (95% CL) which does not rely on
this kinematic association. The mass of directly imaged companions are usually
inferred from theoretical evolutionary tracks, which are highly dependent on
the age of the star. Based on the age extrema, we demonstrate that with our
photometric data alone, the companion's mass is highly uncertain: between 33
and 96 M (0.03-0.09 M) using the COND evolutionary
models. We compare the companion's SINFONI spectrum with field dwarf spectra to
break this degeneracy. Based on the slope and shape of the spectrum in the
H-band, we conclude that the companion is an M dwarf. The age of the
system is not further constrained by the companion, as M dwarfs are poorly fit
on low-mass evolutionary tracks. This discovery emphasizes the importance of
obtaining a spectrum to spectral type companions around F-stars.Comment: Accepted for publication in MNRAS, 10 pages, 5 figure
Constraints on nuclear matter properties from QCD susceptibilities
We establish the interrelation between the QCD scalar response of the nuclear
medium and its response to a scalar probe coupled to nucleons, such as the
scalar meson responsible for the nuclear binding. The relation that we derive
applies at the nucleonic as well as at the nuclear levels. Non trivial
consequences follow. In particular it opens the possibility of relating medium
effects in the scalar meson exchange or three-body forces of nuclear physics to
QCD lattice studies of the nucleon massComment: Submitted to EPJ
Laboratory validation of the dual-zone phase mask coronagraph in broadband light at the high-contrast imaging THD-testbed
Specific high contrast imaging instruments are mandatory to characterize
circumstellar disks and exoplanets around nearby stars. Coronagraphs are
commonly used in these facilities to reject the diffracted light of an observed
star and enable the direct imaging and spectroscopy of its circumstellar
environment. One important property of the coronagraph is to be able to work in
broadband light.
Among several proposed coronagraphs, the dual-zone phase mask coronagraph is
a promising solution for starlight rejection in broadband light. In this paper,
we perform the first validation of this concept in laboratory.
First, we recall the principle of the dual-zone phase mask coronagraph. Then,
we describe the high-contrast imaging THD testbed, the manufacturing of the
components and the quality-control procedures. Finally, we study the
sensitivity of our coronagraph to low-order aberrations (inner working angle
and defocus) and estimate its contrast performance. Our experimental broadband
light results are compared with numerical simulations to check agreement with
the performance predictions.
With the manufactured prototype and using a dark hole technique based on the
self-coherent camera, we obtain contrast levels down to between 5
and 17 in monochromatic light (640 nm). We also reach contrast
levels of between 7 and 17 in broadband
( nm, nm and %), which demonstrates the excellent chromatic performance of the dual-zone
phase mask coronagraph.
The performance reached by the dual-zone phase mask coronagraph is promising
for future high-contrast imaging instruments that aim at detecting and
spectrally characterizing old or light gaseous planets.Comment: 9 pages, 16 figure
- …
