21 research outputs found

    Properties of Magnetic tongues over a Solar Cycle

    Get PDF
    The photospheric spatial distribution of the main magnetic polarities of bipolar active regions (ARs) present during their emergence deformations are known as magnetic tongues. They are attributed to the presence of twist in the toroidal magnetic-flux tubes that form the ARs. The aim of this article is to study the twist of newly emerged ARs from the evolution of magnetic tongues observed in photospheric line-of-sight magnetograms. We apply the procedure described by Poisson et al. (Solar Phys. 290, 727, 2015a) to ARs observed over the full Solar Cycle 23 and the beginning of Cycle 24. Our results show that the hemispherical rule obtained using the tongues as a proxy of the twist has a weak sign dominance (53 % in the southern hemisphere and 58 % in the northern hemisphere). By defining the variation of the tongue angle, we characterize the strength of the magnetic tongues during different phases of the AR emergence. We find that there is a tendency of the tongues to be stronger during the beginning of the emergence and to become weaker as the AR reaches its maximum magnetic flux. We compare this evolution with the emergence of a toroidal flux-rope model with non-uniform twist. The variety of evolution of the tongues in the analyzed ARs can only be reproduced when using a broad range of twist profiles, in particular having a large variety of twist gradients in the direction vertical to the photosphere. Although the analytical model used is a special case, selected to minimize the complexity of the problem, the results obtained set new observational constraints to theoretical models of flux-rope emergence that form bipolar ARs.Fil: Poisson, Mariano. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Démoulin, Pascal. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Lopez Fuentes, Marcelo Claudio. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentin

    Comparison of Different Matrices as Potential Quality Control Samples for Neurochemical Dementia Diagnostics

    Get PDF
    Aim. Lactulose/mannitol ratio is used to assess intestinal barrier function. Aim of this work was to develop a robust and rapid method for the analysis of lactulose and mannitol in urine by liquid chromatography coupled to tandem mass spectrometry. Lactulose/mannitol ratio has been measured in pediatric patients suffering from irritable bowel syndrome. Methods. Calibration curves and raffinose, used as internal standard, were prepared in water : acetonitrile 20:80. Fifty mu L of urine sample was added to 450 mu L of internal standard solution. The chromatographic separation was performed using a Luna NH2 column operating at a flow rate of 200 mu L/min and eluted with a linear gradient from 20% to 80% water in acetonitrile. Total run time is 9 minutes. The mass spectrometry operates in electrospray negative mode. Method was fully validated according to European Medicine Agency guidelines. Results and Conclusions. Linearity ranged from 10 to 1000 mg/L for mannitol and 2.5 to 1000 mg/L for lactulose. Imprecision in intra-and interassay was lower than 15% for both analytes. Accuracy was higher than 85%. Lactulose/mannitol ratio in pediatric patients is significantly higher than that measured in controls. The presented method, rapid and sensitive, is suitable in a clinical laboratory

    Electric-charge-dependent directed flow splitting of produced quarks in Au+Au collisions

    No full text
    We report directed flow (v1) of multistrange baryons (Ξ and Ω) and improved v1 data for K−, p¯, Λ¯ and ϕ in Au+Au collisions at sNN=27 and 200 GeV from the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). We focus on particles whose constituent quarks are not transported from the incoming nuclei but instead are produced in the collisions. At intermediate impact parameters, we examine quark coalescence behavior for particle combinations with identical quark content, and search for any departure from this behavior (“splitting”) for combinations having non-identical quark content. Under the assumption of quark coalescence for produced quarks, the splitting strength appears to increase with the electric charge difference of the constituent quarks in the combinations, consistent with electromagnetic effect expectations

    Measurements of the Z0/γ⁎ cross section and transverse single spin asymmetry in 510 GeV p + p collisions

    No full text
    The differential cross section for Z0 production, measured as a function of the boson's transverse momentum (pT), provides important constraints on the evolution of the transverse momentum dependent parton distribution functions (TMDs). The transverse single spin asymmetry (TSSA) of the Z0 is sensitive to one of the polarized TMDs, the Sivers function, which is predicted to have the opposite sign in p+p →W/Z+X from that which enters in semi-inclusive deep inelastic scattering. In this Letter, the STAR Collaboration reports the first measurement of the Z0/γ⁎ differential cross section as a function of its pT in p+p collisions at a center-of-mass energy of 510 GeV, together with the Z0/γ⁎ total cross section. We also report the measurement of Z0/γ⁎ TSSA in transversely polarized p+p collisions at 510 GeV
    corecore