65 research outputs found
Quantum escape of the phase in a strongly driven Josephson junction
A quantum mechanical analysis of the Josephson phase escape in the presence
of both dc and ac bias currents is presented. We find that the potential
barrier for the escape of the phase is effectively suppressed as the resonant
condition occurs, i.e. when the frequency of the ac bias matches the
Josephson junction energy level separation. This effect manifests itself by a
pronounced drop in the dependence of the switching current on the power
of the applied microwave radiation and by a peculiar double-peak structure
in the switching current distribution . The developed theory is in a
good accord with an experiment which we also report in this paper. The obtained
features can be used to characterize certain aspects of the quantum-mechanical
behavior of the Josephson phase, such as the energy level quantization, the
Rabi frequency of coherent oscillations and the effect of damping.Comment: 4 pages, 3 figures, to be published in Physical Review B (Rapid
Communication
Probe-configuration dependent dephasing in a mesoscopic interferometer
Dephasing in a ballistic four-terminal Aharonov-Bohm geometry due to charge
and voltage fluctuations is investigated. Treating two terminals as voltage
probes, we find a strong dependence of the dephasing rate on the probe
configuration in agreement with a recent experiment by Kobayashi et al. (J.
Phys. Soc. Jpn. 71, 2094 (2002)). Voltage fluctuations in the measurement
circuit are shown to be the source of the configuration dependence.Comment: 4 pages, 3 figure
Disordered Hubbard Model with Attraction: Coupling Energy of Cooper Pairs in Small Clusters
We generalize the Cooper problem to the case of many interacting particles in
the vicinity of the Fermi level in the presence of disorder. On the basis of
this approach we study numerically the variation of the pair coupling energy in
small clusters as a function of disorder. We show that the Cooper pair energy
is strongly enhanced by disorder, which at the same time leads to the
localization of pairs.Comment: revtex, 5 pages, 6 figure
Noise and Measurement Efficiency of a Partially Coherent Mesoscopic Detector
We study the noise properties and efficiency of a mesoscopic resonant-level
conductor which is used as a quantum detector, in the regime where transport
through the level is only partially phase coherent. We contrast models in which
detector incoherence arises from escape to a voltage probe, versus those in
which it arises from a random time-dependent potential. Particular attention is
paid to the back-action charge noise of the system. While the average detector
current is similar in all models, we find that its noise properties and
measurement efficiency are sensitive both to the degree of coherence and to the
nature of the dephasing source. Detector incoherence prevents quantum limited
detection, except in the non-generic case where the source of dephasing is not
associated with extra unobserved information. This latter case can be realized
in a version of the voltage probe model.Comment: 15 pages, 5 figures; revised dicussion of voltage probe model
Quantum-Limited Measurement and Information in Mesoscopic Detectors
We formulate general conditions necessary for a linear-response detector to
reach the quantum limit of measurement efficiency, where the
measurement-induced dephasing rate takes on its minimum possible value. These
conditions are applicable to both non-interacting and interacting systems. We
assess the status of these requirements in an arbitrary non-interacting
scattering based detector, identifying the symmetries of the scattering matrix
needed to reach the quantum limit. We show that these conditions are necessary
to prevent the existence of information in the detector which is not extracted
in the measurement process.Comment: 13 pages, 1 figur
Decoherence in circuits of small Josephson junctions
We discuss dephasing by the dissipative electromagnetic environment and by
measurement in circuits consisting of small Josephson junctions. We present
quantitative estimates and determine in which case the circuit might qualify as
a quantum bit. Specifically, we analyse a three junction Cooper pair pump and
propose a measurement to determine the decoherence time .Comment: 4 pages, 4 figure
Density of states and magnetoconductance of disordered Au point contacts
We report the first low temperature magnetotransport measurements on
electrochemically fabricated atomic scale gold nanojunctions. As , the
junctions exhibit nonperturbatively large zero bias anomalies (ZBAs) in their
differential conductance. We consider several explanations and find that the
ZBAs are consistent with a reduced local density of states (LDOS) in the
disordered metal. We suggest that this is a result of Coulomb interactions in a
granular metal with moderate intergrain coupling. Magnetoconductance of atomic
scale junctions also differs significantly from that of less geometrically
constrained devices, and supports this explanation.Comment: 5 pages, 5 figures. Accepted to PRB as Brief Repor
Conduction channels of superconducting quantum point contacts
Atomic quantum point contacts accommodate a small number of conduction
channels. Their number N and transmission coefficients {T_n} can be determined
by analyzing the subgap structure due to multiple Andreev reflections in the
current-voltage (IV) characteristics in the superconducting state. With the
help of mechanically controllable break-junctions we have produced Al contacts
consisting of a small number of atoms. In the smallest stable contacts, usually
three channels contribute to the transport. We show here that the channel
ensemble {T_n} of few atom contacts remains unchanged up to temperatures and
magnetic fields approaching the critical temperature and the critical field,
respectively, giving experimental evidence for the prediction that the
conduction channels are the same in the normal and in the superconducting
state.Comment: 8 pages, 5 .eps figures. To be published in Physica B 22
Microscopic theory of single-electron tunneling through molecular-assembled metallic nanoparticles
We present a microscopic theory of single-electron tunneling through metallic
nanoparticles connected to the electrodes through molecular bridges. It
combines the theory of electron transport through molecular junctions with the
description of the charging dynamics on the nanoparticles. We apply the theory
to study single-electron tunneling through a gold nanoparticle connected to the
gold electrodes through two representative benzene-based molecules. We
calculate the background charge on the nanoparticle induced by the charge
transfer between the nanoparticle and linker molecules, the capacitance and
resistance of molecular junction using a first-principles based Non-Equilibrium
Green's Function theory. We demonstrate the variety of transport
characteristics that can be achieved through ``engineering'' of the
metal-molecule interaction.Comment: To appear in Phys. Rev.
Electronic and thermal sequential transport in metallic and superconducting two-junction arrays
The description of transport phenomena in devices consisting of arrays of
tunnel junctions, and the experimental confirmation of these predictions is one
of the great successes of mesoscopic physics. The aim of this paper is to give
a self-consistent review of sequential transport processes in such devices,
based on the so-called "orthodox" model. We calculate numerically the
current-voltage (I-V) curves, the conductance versus bias voltage (G-V) curves,
and the associated thermal transport in symmetric and asymmetric two-junction
arrays such as Coulomb-blockade thermometers (CBTs),
superconducting-insulator-normal-insulator-superconducting (SINIS) structures,
and superconducting single-electron transistors (SETs). We investigate the
behavior of these systems at the singularity-matching bias points, the
dependence of microrefrigeration effects on the charging energy of the island,
and the effect of a finite superconducting gap on Coulomb-blockade thermometry.Comment: 23 pages, 12 figures; Berlin (ISBN: 978-3-642-12069-5
- …
