12 research outputs found
Phytoremediatory effect and growth of two species of Ocimum in endosulfan polluted soil
Bi-dimensional sustainability analysis of a multi-feed biorefinery design for biofuels co-production from lignocellulosic residues and agro-industrial wastes
Examining the immune signatures of SARS-CoV-2 infection in pregnancy and the impact on neurodevelopment: Protocol of the SIGNATURE longitudinal study.
The COVID-19 pandemic represents a valuable opportunity to carry out cohort studies that allow us to advance our knowledge on pathophysiological mechanisms of neuropsychiatric diseases. One of these opportunities is the study of the relationships between inflammation, brain development and an increased risk of suffering neuropsychiatric disorders. Based on the hypothesis that neuroinflammation during early stages of life is associated with neurodevelopmental disorders and confers a greater risk of developing neuropsychiatric disorders, we propose a cohort study of SARS-CoV-2-infected pregnant women and their newborns. The main objective of SIGNATURE project is to explore how the presence of prenatal SARS-CoV-2 infection and other non-infectious stressors generates an abnormal inflammatory activity in the newborn. The cohort of women during the COVID-19 pandemic will be psychological and biological monitored during their pregnancy, delivery, childbirth and postpartum. The biological information of the umbilical cord (foetus blood) and peripheral blood from the mother will be obtained after childbirth. These samples and the clinical characterisation of the cohort of mothers and newborns, are tremendously valuable at this time. This is a protocol report and no analyses have been conducted yet, being currently at, our study is in the recruitment process step. At the time of this publication, we have identified 1,060 SARS-CoV-2 infected mothers and all have already given birth. From the total of identified mothers, we have recruited 537 SARS-COV-2 infected women and all of them have completed the mental health assessment during pregnancy. We have collected biological samples from 119 mothers and babies. Additionally, we have recruited 390 non-infected pregnant women
Genome-wide association study identifies 48 common genetic variants associated with handedness.
Handedness has been extensively studied because of its relationship with language and the over-representation of left-handers in some neurodevelopmental disorders. Using data from the UK Biobank, 23andMe and the International Handedness Consortium, we conducted a genome-wide association meta-analysis of handedness (N = 1,766,671). We found 41 loci associated (P < 5 × 10 <sup>-8</sup> ) with left-handedness and 7 associated with ambidexterity. Tissue-enrichment analysis implicated the CNS in the aetiology of handedness. Pathways including regulation of microtubules and brain morphology were also highlighted. We found suggestive positive genetic correlations between left-handedness and neuropsychiatric traits, including schizophrenia and bipolar disorder. Furthermore, the genetic correlation between left-handedness and ambidexterity is low (r <sub>G</sub> = 0.26), which implies that these traits are largely influenced by different genetic mechanisms. Our findings suggest that handedness is highly polygenic and that the genetic variants that predispose to left-handedness may underlie part of the association with some psychiatric disorders
Author Correction: The power of genetic diversity in genome-wide association studies of lipids (Nature, (2021), 600, 7890, (675-679), 10.1038/s41586-021-04064-3)
Correction to: Nature Published online 9 December 2021 In the version of this article initially published, Noha A. Yousri (Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar and Department of Computer and Systems Engineering, Alexandria University, Egypt) and Steven C. Hunt (Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA and Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar) were not included in the author list. In addition, Hieab H. H. Adams (Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands and Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands) was shown with an incorrect second affiliation in the HTML and PDF versions of the article. Finally, in the HTML version, Cristen J. Willer was mistakenly listed with an extra affiliation (Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia). The authors and affiliations have been corrected in the HTML and PDF versions of the article. © 2023, The Author(s), under exclusive licence to Springer Nature Limited
Rare and low-frequency coding variants alter human adult height
Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.</p
A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids
A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology. © 2022 American Society of Human Genetic
Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity
Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity. © 2017 The Author(s).</p
Rare and low-frequency coding variants alter human adult height
Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of
Publisher Correction: Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity (Nature Genetics, (2018), 50, 1, (26-41), 10.1038/s41588-017-0011-x)
In the HTML version of this article initially published, the author groups ‘CHD Exome+ Consortium’, ‘EPIC-CVD Consortium’, ‘ExomeBP Consortium’, ‘Global Lipids Genetic Consortium’, ‘GoT2D Genes Consortium’, ‘EPIC InterAct Consortium’, ‘INTERVAL Study’, ‘ReproGen Consortium’, ‘T2D-Genes Consortium’, ‘The MAGIC Investigators’ and ‘Understanding Society Scientific Group’ appeared at the end of the author list but should have appeared earlier in the list, after author Krina T. Zondervan. The errors have been corrected in the HTML version of the article. © 2019, The Author(s), under exclusive licence to Springer Nature America, Inc.</p
