1,363 research outputs found
Lock-Free and Practical Deques using Single-Word Compare-And-Swap
We present an efficient and practical lock-free implementation of a
concurrent deque that is disjoint-parallel accessible and uses atomic
primitives which are available in modern computer systems. Previously known
lock-free algorithms of deques are either based on non-available atomic
synchronization primitives, only implement a subset of the functionality, or
are not designed for disjoint accesses. Our algorithm is based on a doubly
linked list, and only requires single-word compare-and-swap atomic primitives,
even for dynamic memory sizes. We have performed an empirical study using full
implementations of the most efficient algorithms of lock-free deques known. For
systems with low concurrency, the algorithm by Michael shows the best
performance. However, as our algorithm is designed for disjoint accesses, it
performs significantly better on systems with high concurrency and non-uniform
memory architecture
Using Subsystem MT2 for Complete Mass Determinations in Decay Chains with Missing Energy at Hadron Colliders
We propose to use the MT2 concept to measure the masses of all particles in
SUSY-like events with two unobservable, identical particles. To this end we
generalize the usual notion of MT2 and define a new MT2(n,p,c) variable, which
can be applied to various subsystem topologies, as well as the full event
topology. We derive analytic formulas for its endpoint MT2{max}(n,p,c) as a
function of the unknown test mass Mc of the final particle in the subchain and
the transverse momentum pT due to radiation from the initial state. We show
that the endpoint functions MT2{max}(n,p,c)(Mc,pT) may exhibit three different
types of kinks and discuss the origin of each type. We prove that the subsystem
MT2(n,p,c) variables by themselves already yield a sufficient number of
measurements for a complete determination of the mass spectrum (including the
overall mass scale). As an illustration, we consider the simple case of a decay
chain with up to three heavy particles, X2 -> X1 -> X0, which is rather
problematic for all other mass measurement methods. We propose three different
MT2-based methods, each of which allows a complete determination of the masses
of particles X0, X1 and X2. The first method only uses MT2(n,p,c) endpoint
measurements at a single fixed value of the test mass Mc. In the second method
the unknown mass spectrum is fitted to one or more endpoint functions
MT2{max}(n,p,c)(Mc,pT) exhibiting a kink. The third method is hybrid, combining
MT2 endpoints with measurements of kinematic edges in invariant mass
distributions. As a practical application of our methods, we show that the
dilepton W+W- and tt-bar samples at the Tevatron can be used for an independent
determination of the masses of the top quark, the W boson and the neutrino,
without any prior assumptions.Comment: 47 pages, 9 figures. revised version, published in JHEP. Major
addition: a new appendix with the complete set of formulas for the MT2
endpoints as functions of the upstream transverse momentum pT and test mass
M
The interobserver and test-retest variability of the dysphonia severity index
Objective: The purpose of this study was to investigate the interobserver variability and the test-retest variability of the Dysphonia Severity Index (DSI), a multiparametric instrument to assess voice quality. Methods: The DSI was measured in 30 nonsmoking volunteers without voice complaints or voice disorders by two speech pathologists. The subjects were measured on 3 different days, with an interval of 1 week. Results: The difference in DSI between two observers (interobserver difference) was not significant. The intraclass correlation coefficient for the DSI was 0.79. The standard deviation of the difference between two duplicate measurements by different observers was 1.27. Conclusion: Differences in measurements between different observers were not significant. The intraclass correlation coefficient of the DSI was 0.79, which is to be considered good. Differences in DSI within one patient need to be larger than 2.49 to be significant. Copyrigh
Giant Gravitons - with Strings Attached (III)
We develop techniques to compute the one-loop anomalous dimensions of
operators in the super Yang-Mills theory that are dual to open
strings ending on boundstates of sphere giant gravitons. Our results, which are
applicable to excitations involving an arbitrary number of open strings,
generalize the single string results of hep-th/0701067. The open strings we
consider carry angular momentum on an S embedded in the S of the
AdSS background. The problem of computing the one loop anomalous
dimensions is replaced with the problem of diagonalizing an interacting Cuntz
oscillator Hamiltonian. Our Cuntz oscillator dynamics illustrates how the
Chan-Paton factors for open strings propagating on multiple branes can arise
dynamically.Comment: 66 pages; v2: improved presentatio
Nonlinear screening and percolative transition in a two-dimensional electron liquid
A novel variational method is proposed for calculating the percolation
threshold, the real-space structure, and the thermodynamical compressibility of
a disordered two-dimensional electron liquid. Its high accuracy is verified
against prior numerical results and newly derived exact asymptotics. The
inverse compressibility is shown to have a strongly asymmetric minimum at a
density that is approximately the triple of the percolation threshold. This
implies that the experimentally observed metal-insulator transition takes place
well before the percolation point is reached.Comment: 4 pages, 2 figures. (v2) minor changes (v3) reference added (v4) few
more references adde
Analysis of acoustic emission during the melting of embedded indium particles in an aluminum matrix: a study of plastic strain accommodation during phase transformation
Acoustic emission is used here to study melting and solidification of
embedded indium particles in the size range of 0.2 to 3 um in diameter and to
show that dislocation generation occurs in the aluminum matrix to accommodate a
2.5% volume change. The volume averaged acoustic energy produced by indium
particle melting is similar to that reported for bainite formation upon
continuous cooling. A mechanism of prismatic loop generation is proposed to
accommodate the volume change and an upper limit to the geometrically necessary
increase in dislocation density is calculated as 4.1 x 10^9 cm^-2 for the
Al-17In alloy. Thermomechanical processing is also used to change the size and
distribution of the indium particles within the aluminum matrix. Dislocation
generation with accompanied acoustic emission occurs when the melting indium
particles are associated with grain boundaries or upon solidification where the
solid-liquid interfaces act as free surfaces to facilitate dislocation
generation. Acoustic emission is not observed for indium particles that require
super heating and exhibit elevated melting temperatures. The acoustic emission
work corroborates previously proposed relaxation mechanisms from prior internal
friction studies and that the superheat observed for melting of these
micron-sized particles is a result of matrix constraint.Comment: Presented at "Atomistic Effects in Migrating Interphase Interfaces -
Recent Progress and Future Study" TMS 201
Consonance and Cantor set-selectors
It is shown that every metrizable consonant space is a Cantor set-selector. Some applications are derived from this fact, also the relationship is discussed in the framework of hyperspaces and Prohorov spaces.peer-reviewe
Global Strings in High Density QCD
We show that several types of global strings occur in colour superconducting
quark matter due to the spontaneous violation of relevant U(1) symmetries.
These include the baryon U(1)_B, and approximate axial U(1)_A symmetries as
well as an approximate U(1)_S arising from kaon condensation. We discuss some
general properties of these strings and their interactions. In particular, we
demonstrate that the U(1)_A strings behave as superconducting strings. We draw
some parallels between these strings and global cosmological strings and
discuss some possible implications of these strings to the physics in neutron
star cores.Comment: LaTeX JHEP-format (26 pages) Option in source for REVTeX4 forma
Quantum Interference: From Kaons to Neutrinos (with Quantum Beats in between)
Using the vehicle of resolving an apparent paradox, a discussion of quantum
interference is presented. The understanding of a number of different physical
phenomena can be unified, in this context. These range from the neutral kaon
system to massive neutrinos, not to mention quantum beats, Rydberg wave
packets, and neutron gravity.Comment: 12 pages, LaTeX, 3 figure
- …
