23 research outputs found

    Alteration of collagen-dependent adhesion, motility, and morphogenesis by the expression of antisense alpha 2 integrin mRNA in mammary cells

    Full text link
    Although integrins are known to mediate adhesive binding of cells to the extracellular matrix, their role in mediating cellular growth, morphology, and differentiation is less clear. To determine more directly the role of the alpha 2 beta 1 integrin, a collagen and laminin receptor, in mediating the collagen-dependent differentiation of mammary cells, we reduced expression of the integrin by the well differentiated human breast carcinoma cell line, T47D, by stably expressing alpha 2 integrin antisense mRNA. Flow cytometry demonstrated that the antisense-expressing clones had levels of alpha 2 beta 1 integrin on their surfaces that were decreased by 30–70%. Adhesion of antisense-expressing clones to both collagens I and IV was decreased relative to controls in a manner that correlated with the level of cell surface alpha 2 beta 1 integrin expression. Adhesion to fibronectin and laminin were not affected. Motility across collagen-coated filters in haptotaxis assays was increased for only those clones that exhibited intermediate levels of adhesion to collagen, suggesting that an intermediate density of cell-surface alpha 2 beta 1 integrin optimally supports cell motility. When cultured in three-dimensional collagen gels, T47D cells organized in a manner suggestive of a glandular epithelium. In contrast, antisense-expressing clones with decreased alpha 2 beta 1 integrin were not able to organize in three-dimensional collagen gels. The growth rate of T47D cells was reduced when the cells were cultured in three-dimensional collagen gels. Unlike adhesion, motility, and morphogenesis, growth rates were unaffected by reduction of alpha 2 beta 1 integrin expression. Our results suggest that adhesive interactions mediated by a critical level of surface alpha 2 beta 1 integrin expression are key determinants of the collagen-dependent morphogenetic capacity of mammary epithelial cells.</jats:p

    c-erbB2–induced Disruption of Matrix Adhesion and Morphogenesis Reveals a Novel Role for Protein Kinase B as a Negative Regulator of α(2)β(1) Integrin Function

    No full text
    Overexpression of the growth factor receptor subunit c-erbB2, leading to its ligand-independent homodimerization and activation, has been implicated in the pathogenesis of mammary carcinoma. Here, we have examined the effects of c-erbB2 on the adhesive properties of a mammary epithelial cell line, HB2/tnz34, in which c-erbB2 homodimerization can be induced by means of a transfected hybrid “trk-neu” construct. trk-neu consists of the extracellular domain of the trkA nerve growth factor (NGF) receptor fused to the transmembrane and cytoplasmic domains of c-erbB2, allowing NGF-induced c-erbB2 homodimer signaling. Both spreading and adhesion on collagen surfaces were impaired on c-erbB2 activation in HB2/tnz34 cells. Antibody-mediated stimulation of α(2)β(1) integrin function restored adhesion, suggesting a direct role for c-erbB2 in integrin inactivation. Using pharmacological inhibitors and transient transfections, we identified signaling pathways required for suppression of integrin function by c-erbB2. Among these was the MEK-ERK pathway, previously implicated in integrin inactivation. However, we could also show that downstream of phosphoinositide-3-kinase (PI3K), protein kinase B (PKB) acted as a previously unknown, potent inhibitor of integrin function and mediator of the disruptive effects of c-erbB2 on adhesion and morphogenesis. The integrin-linked kinase, previously identified as a PKB coactivator, was also found to be required for integrin inactivation by c-erbB2. In addition, the PI3K-dependent mTOR/S6 kinase pathway was shown to mediate c-erbB2–induced inhibition of adhesion (but not spreading) independently of PKB. Overexpression of MEK1 or PKB suppressed adhesion without requirement for c-erbB2 activation, suggesting that these two pathways partake in integrin inhibition by targeting common downstream effectors. These results demonstrate a major novel role for PI3K and PKB in regulation of integrin function
    corecore