31 research outputs found
Two and Three Nucleon Forces
Chiral symmetry allows two and three nucleon forces to be treated in a single
theoretical framework. We discuss two new features of this research programme
at \cO(q^4) and the consistency of the overall chiral picture.Comment: Talk at the 18th International IUPAP Conference on Few-Body Problems
in Physics, Santos, Brazi
Two-pion exchange NN potential from Lorentz-invariant EFT
We outline the progress made in the past five years by the S\~ao Paulo group
in the development of a two-pion exchange nucleon-nucleon potential within a
Lorentz-invariant framework of (baryon) chiral perturbation theory.Comment: 5 pages, Talk given at the 18th International IUPAP Conference on
Few-Body Problems in Physics, August 21-26 2006, Santos, Sao Paulo, Brazi
Quark Condensate in the Deuteron
We study the changes produced by the deuteron on the QCD quark condensate by
means the Feynman-Hellmann theorem and find that the pion mass dependence of
the pion-nucleon coupling could play an important role. We also discuss the
relation between the many body effect of the condensate and the meson exchange
currents, as seen by photons and pions. For pion probes, the many-body term in
the physical amplitude differs significantly from that of soft pions, the one
linked to the condensate. Thus no information about the many-body term of the
condensate can be extracted from the pion-deuteron scattering length. On the
other hand, in the Compton amplitude, the relationship with the condensate is a
more direct one.Comment: to appear in Physics Review C (19 pages, 3 figures
NN Scattering: Chiral Predictions for Asymptotic Observables
We assume that the nuclear potential for distances larger than 2.5 fm is
given just by the exchanges of one and two pions and, for the latter, we adopt
a model based on chiral symmetry and subthreshold pion-nucleon amplitudes,
which contains no free parameters. The predictions produced by this model for
nucleon-nucleon observables are calculated and shown to agree well with both
experiment and those due to phenomenological potentials.Comment: 16 pages, 12 PS figures included, to appear in Physical Review
Three-Nucleon Force Effects in Nucleon Induced Deuteron Breakup: Predictions of Current Models (I)
An extensive study of three-nucleon force effects in the entire phase space
of the nucleon-deuteron breakup process, for energies from above the deuteron
breakup threshold up to 200 MeV, has been performed. 3N Faddeev equations have
been solved rigorously using the modern high precision nucleon-nucleon
potentials AV18, CD Bonn, Nijm I, II and Nijm 93, and also adding 3N forces. We
compare predictions for cross sections and various polarization observables
when NN forces are used alone or when the two pion-exchange Tucson-Melbourne
3NF was combined with each of them. In addition AV18 was combined with the
Urbana IX 3NF and CD Bonn with the TM' 3NF, which is a modified version of the
TM 3NF, more consistent with chiral symmetry. Large but generally model
dependent 3NF effects have been found in certain breakup configurations,
especially at the higher energies, both for cross sections and spin
observables. These results demonstrate the usefulness of the kinematically
complete breakup reaction in testing the proper structure of 3N forces.Comment: 42 pages, 20 ps figures, 2 gif figure
Analysis of three-nucleon forces effects in the system
Using modern nucleon-nucleon interactions in the description of the
nuclear systems the per datum results to be much bigger than one. In
particular it is not possible to reproduce the three- and four-nucleon binding
energies and the scattering length simultaneously. This is one
manifestation of the necessity of including a three-nucleon force in the
nuclear Hamiltonian. In this paper we perform an analysis of some, widely used,
three-nucleon force models. We analyze their capability to describe the
aforementioned quantities and, to improve their description, we propose
modifications in the parametrization of the models. The effects of these new
parametrization are studied in some polarization observables at low energies.Comment: 10 pages, to be published in Few-Body Systems. Presented at the
workshop on "Relativistic Description of Two- and Three-body Systems in
Nuclear Physics" ECT* Trento, 19 - 23 October 200
The alpha-particle based on modern nuclear forces
The Faddeev-Yakubovsky equations for the alpha-particle are solved. Accurate
results are obtained for several modern NN interaction models, which include
charge-symmetry breaking effects in the NN force, nucleon mass dependences as
well as the Coulomb interaction. These models are augmented by three-nucleon
forces of different types and adjusted to the 3N binding energy. Our results
are close to the experimental binding energy with a slight overbinding. Thus
there is only little room left for the contribution of possible 4N interactions
to the alpha-particle binding energy. We also discuss model dependences of the
binding energies and the wave functions.Comment: 22 pages REVTeX 4, 12 figures, table with TM parameters added, typos
corrected, version as published in PR
phase shifts and CP Violation in Decay
In the study of CP violation signals in {\O}\to\pi\Xi nonleptonic decays,
the strong =3/2 and phase shifts for the final-state
interactions are needed. These phases are calculated using an effective
Lagrangian model, including , (1530), and the -term,
in the intermediate states. The -term is calculated in terms of the
scalar form factor of the baryon.Comment: 6 pages, 2 figure
Nucleon-deuteron elastic scattering as a tool to probe properties of three-nucleon forces
Faddeev equations for elastic Nd scattering have been solved using modern NN
forces combined with the Tucson-Melbourne two-pion exchange three-nucleon
force, with a modification thereof closer to chiral symmetry and the Urbana IX
three-nucleon force. Theoretical predictions for the differential cross section
and several spin observables using NN forces only and NN forces combined with
three-nucleon force models are compared to each other and to the existing data.
A wide range of energies from 3 to 200 MeV is covered. Especially at the higher
energies striking three-nucleon force effects are found, some of which are
supported by the still rare set of data, some are in conflict with data and
thus very likely point to defects in those three-nucleon force models.Comment: 30 pages, 14 Postscript figures; now minor changes in figures and
reference
