3,531 research outputs found
Apparent Superluminal Behavior
The apparent superluminal propagation of electromagnetic signals seen in
recent experiments is shown to be the result of simple and robust properties of
relativistic field equations. Although the wave front of a signal passing
through a classically forbidden region can never move faster than light, an
attenuated replica of the signal is reproduced ``instantaneously'' on the other
side of the barrier. The reconstructed signal, causally connected to the
forerunner rather than the bulk of the input signal, appears to move through
the barrier faster than light.Comment: 8 pages, no figure
Critical Collapse of the Massless Scalar Field in Axisymmetry
We present results from a numerical study of critical gravitational collapse
of axisymmetric distributions of massless scalar field energy. We find
threshold behavior that can be described by the spherically symmetric critical
solution with axisymmetric perturbations. However, we see indications of a
growing, non-spherical mode about the spherically symmetric critical solution.
The effect of this instability is that the small asymmetry present in what
would otherwise be a spherically symmetric self-similar solution grows. This
growth continues until a bifurcation occurs and two distinct regions form on
the axis, each resembling the spherically symmetric self-similar solution. The
existence of a non-spherical unstable mode is in conflict with previous
perturbative results, and we therefore discuss whether such a mode exists in
the continuum limit, or whether we are instead seeing a marginally stable mode
that is rendered unstable by numerical approximation.Comment: 11 pages, 8 figure
Spin-dependent hole quantum transport in Aharonov-Bohm ring structure: possible schemes for spin filter
We study the Aharonov-Bohm (AB) effect in two-dimensional mesoscopic frame in
hole systems. We show that differing from the AB effect in electron systems,
due to the presence of both the heavy hole and the light hole, the conductances
not only show the normal spin-unresolved AB oscillations, but also become
spin-separated. Some schemes for spin filter based on the abundant interference
characteristics are proposed.Comment: 4 pages, 5 figures. Phys. Lett. A, 2005, in pres
Gravitational Collapse of Cylindrical Shells Made of Counter-Rotating Dust Particles
The general formulas of a non-rotating dynamic thin shell that connects two
arbitrary cylindrical regions are given using Israel's method. As an
application of them, the dynamics of a thin shell made of counter-rotating dust
particles, which emits both gravitational waves and massless particles when it
is expanding or collapsing, is studied. It is found that when the models
represent a collapsing shell, in some cases the angular momentum of the dust
particles is strong enough to halt the collapse, so that a spacetime
singularity is prevented from forming, while in other cases it is not, and a
line-like spacetime singularity is finally formed on the symmetry axis.Comment: To appear in Phys. Rev.
Polar foliations and isoparametric maps
A singular Riemannian foliation on a complete Riemannian manifold is
called a polar foliation if, for each regular point , there is an immersed
submanifold , called section, that passes through and that meets
all the leaves and always perpendicularly. A typical example of a polar
foliation is the partition of into the orbits of a polar action, i.e., an
isometric action with sections. In this work we prove that the leaves of
coincide with the level sets of a smooth map if is simply
connected. In particular, we have that the orbits of a polar action on a simply
connected space are level sets of an isoparametric map. This result extends
previous results due to the author and Gorodski, Heintze, Liu and Olmos, Carter
and West, and Terng.Comment: 9 pages; The final publication is available at springerlink.com
http://www.springerlink.com/content/c72g4q5350g513n1
Gravitational Collapse of Phantom Fluid in (2+1)-Dimensions
This investigation is devoted to the solutions of Einstein's field equations
for a circularly symmetric anisotropic fluid, with kinematic self-similarity of
the first kind, in -dimensional spacetimes. In the case where the radial
pressure vanishes, we show that there exists a solution of the equations that
represents the gravitational collapse of an anisotropic fluid, and this
collapse will eventually form a black hole, even when it is constituted by the
phantom energy.Comment: 10 page
Isotopic and spin selectivity of H_2 adsorbed in bundles of carbon nanotubes
Due to its large surface area and strongly attractive potential, a bundle of
carbon nanotubes is an ideal substrate material for gas storage. In addition,
adsorption in nanotubes can be exploited in order to separate the components of
a mixture. In this paper, we investigate the preferential adsorption of D_2
versus H_2(isotope selectivity) and of ortho versus para(spin selectivity)
molecules confined in the one-dimensional grooves and interstitial channels of
carbon nanotube bundles. We perform selectivity calculations in the low
coverage regime, neglecting interactions between adsorbate molecules. We find
substantial spin selectivity for a range of temperatures up to 100 K, and even
greater isotope selectivity for an extended range of temperatures,up to 300 K.
This isotope selectivity is consistent with recent experimental data, which
exhibit a large difference between the isosteric heats of D_2 and H_2 adsorbed
in these bundles.Comment: Paper submitted to Phys.Rev. B; 17 pages, 2 tables, 6 figure
Homothetic Self-Similar Solutions of the Three-Dimensional Brans-Dicke Gravity
All homothetic self-similar solutions of the Brans-Dicke scalar field in
three-dimensional spacetime with circular symmetry are found in closed form.Comment: latex, five pages, without figur
Formation mechanism of electrical discharge TiC-Fe composite coatings
Comparison of electric discharge (ED) processed single deposit and continuum TiC-Fe cermet coatings, formed from a sacrificial powder metallurgy TiC tool electrode at negative polarity, on 304 stainless steel, provided insight into the ED coating (EDC) formation mechanism. A deposit from a single spark event was dominated by TiC, phase separated from a ∼2 wt% Fe matrix, with strongly aligned grains and banded microstructure, indicative of solidification from the coating/substrate interface. Conversely, a continuum coating, subjected to ∼200 spark events per location, exhibited a more complex, banded microstructure, with a mixture of equiaxed and columnar TiC grains within a ∼30 wt% Fe-based matrix, along with some concentrations of carbon from the oil dielectric. It is considered that each sparking event remelts previously solidified coating material, with or without further TiC particle incorporation, leading to gradual TiC dilution and the development of a TiC-Fe composite coating with increasing levels of substrate material forming the matrix
Thin-Film Metamaterials called Sculptured Thin Films
Morphology and performance are conjointed attributes of metamaterials, of
which sculptured thin films (STFs) are examples. STFs are assemblies of
nanowires that can be fabricated from many different materials, typically via
physical vapor deposition onto rotating substrates. The curvilinear--nanowire
morphology of STFs is determined by the substrate motions during fabrication.
The optical properties, especially, can be tailored by varying the morphology
of STFs. In many cases prototype devices have been fabricated for various
optical, thermal, chemical, and biological applications.Comment: to be published in Proc. ICTP School on Metamaterials (Augsut 2009,
Sibiu, Romania
- …
