16 research outputs found
Weak localization effect on thermomagnetic phenomena
The quantum transport equation (QTE) is extended to study weak localization
(WL) effects on galvanomagnetic and thermomagnetic phenomena. QTE has many
advantages over the linear response method (LRM): (i) particle-hole asymmetry
which is necessary for the Hall effect is taken into account by the
nonequilibrium distribution function, while LRM requires expansion near the
Fermi surface, (ii) when calculating response to the temperature gradient, the
problem of WL correction to the heat current operator is avoided, (iii)
magnetic field is directly introduced to QTE, while the LRM deals with the
vector potential and and special attention should be paid to maintain gauge
invariance, e.g. when calculating the Nernst effect the heat current operator
should be modified to include the external magnetic field. We reproduce in a
very compact form known results for the conductivity, the Hall and the
thermoelectric effects and then we study our main problem, WL correction to the
Nernst coefficient (transverse thermopower).Comment: 20 pages 2 figure
Effects of Electron-Electron and Electron-Phonon Interactions in Weakly Disordered Conductors and Heterostuctures
We investigate quantum corrections to the conductivity due to the
interference of electron-electron (electron-phonon) scattering and elastic
electron scattering in weakly disordered conductors. The electron-electron
interaction results in a negative -correction in a 3D conductor. In
a quasi-two-dimensional conductor, ( is the thickness, is
the Fermi velocity), with 3D electron spectrum this correction is linear in
temperature and differs from that for 2D electrons (G. Zala et. al., Phys.
Rev.B {\bf 64}, 214204 (2001)) by a numerical factor. In a
quasi-one-dimensional conductor, temperature-dependent correction is
proportional to . The electron interaction via exchange of virtual phonons
also gives -correction. The contribution of thermal phonons interacting
with electrons via the screened deformation potential results in -term and
via unscreened deformation potential results in -term. The interference
contributions dominate over pure electron-phonon scattering in a wide
temperature range, which extends with increasing disorder.Comment: 6 pages, 2figure
Superconductivity by long-range color magnetic interaction in high-density quark matter
We argue that in quark matter at high densities, the color magnetic field
remains unscreened and leads to the phenomenon of color superconductivity.
Using the renormalization group near the Fermi surface, we find that the
long-range nature of the magnetic interaction changes the asymptotic behavior
of the gap at large chemical potential qualitatively. We find
, where is the
small gauge coupling. We discuss the possibility of breaking rotational
symmetry by the formation of a condensate with nonzero angular momentum, as
well as interesting parallels to some condensed matter systems with long-range
forces.Comment: 14 pages, REVTEX, uses eps
Plasmon attenuation and optical conductivity of a two-dimensional electron gas
In a ballistic two-dimensional electron gas, the Landau damping does not lead
to plasmon attenuation in a broad interval of wave vectors q << k_F. Similarly,
it does not contribute to the optical conductivity \sigma (\omega, q) in a wide
domain of its arguments, E_F > \omega > qv_F, where E_F, k_F and v_F are,
respectively, the Fermi energy, wavevector and velocity of the electrons. We
identify processes that result in the plasmon attenuation in the absence of
Landau damping. These processes are: the excitation of two electron-hole pairs,
phonon-assisted excitation of one pair, and a direct plasmon-phonon conversion.
We evaluate the corresponding contributions to the plasmon linewidth and to the
optical conductivity.Comment: 8 pages, 4 figures; final form, misprints correcte
The puzzle of 90 degree reorientation in the vortex lattice of borocarbide superconductors
We explain 90 degree reorientation in the vortex lattice of borocarbide
superconductors on the basis of a phenomenological extension of the nonlocal
London model that takes full account of the symmetry of the system. We propose
microscopic mechanisms that could generate the correction terms and point out
the important role of the superconducting gap anisotropy.Comment: 4 pages, 2 eps figure
Influence of temperature gradients on tunnel junction thermometry below 1 K: cooling and electron-phonon coupling
We have studied thermal gradients in thin Cu and AlMn wires, both
experimentally and theoretically. In the experiments, the wires were Joule
heated non-uniformly at sub-Kelvin temperatures, and the resulting temperature
gradients were measured using normal metal-insulator-superconducting tunnel
junctions. The data clearly shows that even in reasonably well conducting thin
wires with a short (m) non-heated portion, significant temperature
differences can form. In most cases, the measurements agree well with a model
which includes electron-phonon interaction and electronic thermal conductivity
by the Wiedemann-Franz law.Comment: J. Low Temp. Phys. in pres
The Eliashberg Function of Amorphous Metals
A connection is proposed between the anomalous thermal transport properties
of amorphous solids and the low-frequency behavior of the Eliashberg function.
By means of a model calculation we show that the size and frequency dependence
of the phonon mean-free-path that has been extracted from measurements of the
thermal conductivity in amorphous solids leads to a sizeable linear region in
the Eliashberg function at small frequencies. Quantitative comparison with
recent experiments gives very good agreement.Comment: 4pp., REVTeX, 1 uuencoded ps fig. Original posting had a corrupted
raw ps fig appended. Published as PRB 51, 689 (1995
Effect of microstructures on the electron-phonon interaction in the disordered metals PdAg
Using the weak-localization method, we have measured the electron-phonon
scattering times in PdAg thick films prepared by DC-
and RF-sputtering deposition techniques. In both series of samples, we find an
anomalous temperature and disorder dependence,
where is the electron elastic mean free path. This anomalous behavior
cannot be explained in terms of the current concepts for the electron-phonon
interaction in impure conductors. Our result also reveals that the strength of
the electron-phonon coupling is much stronger in the DC than RF sputtered
films, suggesting that the electron-phonon interaction not only is sensitive to
the total level of disorder but also is sensitive to the microscopic quality of
the disorder.Comment: accepted for publication in Phys. Rev.
Weak localization in InSb thin films heavily doped with lead
The paper reports on the investigations of the weak localization (WL) effects
in 3D polycrystalline thin films of InSb. The films are closely compensated
showing the electron concentration n>10^{16} cm^{-3} at the total concentration
of the donor and acceptor type structural defects >10^{18} cm^{-3}. Unless
Pb-doped, the InSb films do not show any measurable or show very small WL
effect at 4.2 K. The Pb-doping to the concentration of the order of 10^{18}
cm^{-3} leads to pronounced WL effects below 7 K. In particular, a clearly
manifested SO scattering is observed. From the comparison of the experimental
data on temperature dependence of the magnetoresistivity and sample resistance
with the WL theory, the temperature dependence of the phase destroying time is
determined. The determination is performed by fitting theoretical terms
obtained from Kawabata's theory to experimental data on magnetoresistance. It
is concluded that the dephasing process is connected to three separate
interaction processes. The first is due to the SO scatterings and is
characterized by temperature-independent relaxation time. The second is
associated with the electron-phonon interaction. The third dephasing process is
characterized by independent on temperature relaxation time tau_c. This
relaxation time is tentatively ascribed to inelastic scattering at extended
structural defects, like grain boundaries. The resulting time dephasing time
shows saturation in its temperature dependence. The temperature dependence of
the resistance of the InSb films can be explained by the electron-electron
interaction for T2 K.Comment: 15 pages with 5 figure
Quantum corrections to the conductivity of fermion - gauge field models: Application to half filled Landau level and high- superconductors
We calculate the Altshuler-Aronov type quantum correction to the conductivity
of charge carriers in a random potential (or random magnetic field)
coupled to a transverse gauge field. The gauge fields considered simulate the
effect of the Coulomb interaction for the fractional quantum Hall state at half
filling and for the model of high- superconducting compounds. We
find an unusually large quantum correction varying linearly or quadratically
with the logarithm of temperature, in different temperature regimes.Comment: 12 pages REVTEX, 1 figure. The figure is added and minor misprints
are correcte
