4,113 research outputs found
Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells.
Dental-derived mesenchymal stem cells (MSCs) provide an advantageous therapeutic option for tissue engineering due to their high accessibility and bioavailability. However, delivering MSCs to defect sites while maintaining a high MSC survival rate is still a critical challenge in MSC-mediated tissue regeneration. Here, we tested the osteogenic and adipogenic differentiation capacity of dental pulp stem cells (DPSCs) in a thermoreversible Pluronic F127 hydrogel scaffold encapsulation system in vitro. DPSCs were encapsulated in Pluronic (®) F-127 hydrogel and stem cell viability, proliferation and differentiation into adipogenic and osteogenic tissues were evaluated. The degradation profile and swelling kinetics of the hydrogel were also analyzed. Our results confirmed that Pluronic F-127 is a promising and non-toxic scaffold for encapsulation of DPSCs as well as control human bone marrow MSCs (hBMMSCs), yielding high stem cell viability and proliferation. Moreover, after 2 weeks of differentiation in vitro, DPSCs as well as hBMMSCs exhibited high levels of mRNA expression for osteogenic and adipogenic gene markers via PCR analysis. Our histochemical staining further confirmed the ability of Pluronic F-127 to direct the differentiation of these stem cells into osteogenic and adipogenic tissues. Furthermore, our results revealed that Pluronic F-127 has a dense tubular and reticular network morphology, which contributes to its high permeability and solubility, consistent with its high degradability in the tested conditions. Altogether, our findings demonstrate that Pluronic F-127 is a promising scaffold for encapsulation of DPSCs and can be considered for cell delivery purposes in tissue engineering
Earthworm extract as a fibrinolytic agent in healthy men: a randomised, double-blind, placebo-controlled study
published_or_final_versio
Resistive Random Access Memories (RRAMs) Based on Metal Nanoparticles
It is demonstrated that planar structures based on silver nanoparticleshosted in a polymer matrix show reliable and reproducible switching properties attractive for non-volatile memory applications. These systems can be programmed between a low conductance (off-state) and high conductance (on-state) with an on/off ratio of 3 orders of magnitude, large retention times and good cycle endurance. The planar structure design offers a series of advantages discussed in this contribution, which make it an ideal tool to elucidate the resistive switching phenomena
Squeezed States and Helmholtz Spectra
The 'classical interpretation' of the wave function psi(x) reveals an
interesting operational aspect of the Helmholtz spectra. It is shown that the
traditional Sturm-Liouville problem contains the simplest key to predict the
squeezing effect for charged particle states.Comment: 10 pages, Latex, 3 gzip-compressed figures in figh.tar.g
Prospects for Improving the Intrinsic and Extrinsic Properties of Magnesium Diboride Superconducting Strands
The magnetic and transport properties of magnesium diboride films represent
performance goals yet to be attained by powder-processed bulk samples and
conductors. Such performance limits are still out of the reach of even the best
magnesium diboride magnet wire. In discussing the present status and prospects
for improving the performance of powder-based wire we focus attention on (1)
the intrinsic (intragrain) superconducting properties of magnesium diboride,
Hc2 and flux pinning, (2) factors that control the efficiency with which
current is transported from grain-to-grain in the conductor, an extrinsic
(intergrain) property. With regard to Item-(1), the role of dopants in Hc2
enhancement is discussed and examples presented. On the other hand their roles
in increasing Jc, both via Hc2 enhancement as well as direct
fluxoid/pining-center interaction, are discussed and a comprehensive survey of
Hc2 dopants and flux-pinning additives is presented. Current transport through
the powder-processed wire (an extrinsic property) is partially blocked by the
inherent granularity of the material itself and the chemical or other
properties of the intergrain surfaces. These and other such results indicate
that in many cases less than 15% of the conductor's cross sectional area is
able to carry transport current. It is pointed out that densification in
association with the elimination of grain-boundary blocking phases would yield
five-to ten-fold increases in Jc in relevant regimes, enabling the performance
of magnesium diboride in selected applications to compete with that of Nb-Sn
A systematic review of randomised controlled trials on the effectiveness of exercise programs on lumbo pelvic pain among postnatal women
Background: A substantial number of women tend to be affected by Lumbo Pelvic Pain (LPP) following child birth.
Physical exercise is indicated as a beneficial method to relieve LPP, but individual studies appear to suggest mixed
findings about its effectiveness. This systematic review aimed to synthesise evidence from randomised controlled trials on the effectiveness of exercise on LPP among postnatal women to inform policy, practice and future research.
Methods: A systematic review was conducted of all randomised controlled trials published between January 1990 and July 2014, identified through a comprehensive search of following databases: PubMed, PEDro, Embase, Cinahl, Medline, SPORTDiscus, Cochrane Pregnancy and Childbirth Group’s Trials Register, and electronic libraries of authors’institutions.
Randomised controlled trials were eligible for inclusion if the intervention comprised of postnatal exercise for women
with LPP onset during pregnancy or within 3 months after delivery and the outcome measures included changes in
LPP. Selected articles were assessed using the PEDro Scale for methodological quality and findings were synthesised narratively as meta-analysis was found to be inappropriate due to heterogeneity among included studies.
Results: Four randomised controlled trials were included, involving 251 postnatal women. Three trials were rated as
of ‘good’ methodological quality. All trials, except one, were at low risk of bias. The trials included physical exercise
programs with varying components, differing modes of delivery, follow up times and outcome measures. Intervention
in one trial, involving physical therapy with specific stabilising exercises, proved to be effective in reducing LPP
intensity. An improvement in gluteal pain on the right side was reported in another trial and a significant difference in
pain frequency in another.
Conclusion: Our review indicates that only few randomised controlled trials have evaluated the effectiveness of
exercise on LPP among postnatal women. There is also a great amount of variability across existing trials in the
components of exercise programs, modes of delivery, follow up times and outcome measures. While there is some
evidence to indicate the effectiveness of exercise for relieving LPP, further good quality trials are needed to ascertain
the most effective elements of postnatal exercise programs suited for LPP treatment
Reversible, Opto-Mechanically Induced Spin-Switching in a Nanoribbon-Spiropyran Hybrid Material
It has recently been shown that electronic transport in zigzag graphene
nanoribbons becomes spin-polarized upon application of an electric field across
the nanoribbon width. However, the electric fields required to experimentally
induce this magnetic state are typically large and difficult to apply in
practice. Here, using both first-principles density functional theory (DFT) and
time-dependent DFT, we show that a new spiropyran-based, mechanochromic polymer
noncovalently deposited on a nanoribbon can collectively function as a dual
opto-mechanical switch for modulating its own spin-polarization. These
calculations demonstrate that upon mechanical stress or photoabsorption, the
spiropyran chromophore isomerizes from a closed-configuration ground-state to a
zwitterionic excited-state, resulting in a large change in dipole moment that
alters the electrostatic environment of the nanoribbon. We show that the
electronic spin-distribution in the nanoribbon-spiropyran hybrid material can
be reversibly modulated via noninvasive optical and mechanical stimuli without
the need for large external electric fields. Our results suggest that the
reversible spintronic properties inherent to the nanoribbon-spiropyran material
allow the possibility of using this hybrid structure as a resettable,
molecular-logic quantum sensor where opto-mechanical stimuli are used as inputs
and the spin-polarized current induced in the nanoribbon substrate is the
measured output.Comment: Accepted by Nanoscal
Clinical-pathological study on β-APP, IL-1β, GFAP, NFL, Spectrin II, 8OHdG, TUNEL, miR-21, miR-16, miR-92 expressions to verify DAI-diagnosis, grade and prognosis
Traumatic brain injury (TBI) is one of the most important death and disability cause, involving substantial costs, also in economic terms, when considering the young age of the involved subject. Aim of this paper is to report a series of patients treated at our institutions, to verify neurological results at six months or survival; in fatal cases we searched for βAPP, GFAP, IL-1β, NFL, Spectrin II, TUNEL and miR-21, miR-16, and miR-92 expressions in brain samples, to verify DAI diagnosis and grade as strong predictor of survival and inflammatory response. Concentrations of 8OHdG as measurement of oxidative stress was performed. Immunoreaction of β-APP, IL-1β, GFAP, NFL, Spectrin II and 8OHdG were significantly increased in the TBI group with respect to control group subjects. Cell apoptosis, measured by TUNEL assay, were significantly higher in the study group than control cases. Results indicated that miR-21, miR-92 and miR-16 have a high predictive power in discriminating trauma brain cases from controls and could represent promising biomarkers as strong predictor of survival, and for the diagnosis of postmortem traumatic brain injury
Performance evaluation of turbulence-accentuated interchannel crosstalk for hybrid fibre and free-space optical wavelength-division-multiplexing systems using digital pulse-position modulation
A hybrid fibre and free-space optical communication link using digital pulse-position modulation (DPPM) in a wavelength-division-multiplexing system is proposed. Such a system, which could provide a power efficient, robust and flexible solution to high-speed access networks, is a contender for a passive optical network solution and could readily be deployed in areas with restrictions in optical fibre installation, or alternatively as a disaster recovery network. Interchannel crosstalk and atmospheric turbulence are major impairments in such a system and could combine in some cases to degrade the system. Both impairments are investigated here and the results are presented in the form of bit error probability, required optical transmission power and power penalties. Depending on the position of the interferer relative to the desired user, power penalties of about 0.2–3.0 dB for weak turbulence and above 20 dB for strong turbulence regimes are reported for bit error rate of 10−6. DPPM scheme with a coding level of 2 show about 2 dB improvements over on–off-keying scheme
- …
