13,186 research outputs found
Recommended from our members
Evaluating the use of Beer's law for estimating light interception in canopy architectures with varying heterogeneity and anisotropy
Light interception in plant canopies is most commonly estimated using a simple one-dimensional turbid medium model (i.e., Beer's law). Inherent in this class of models are assumptions that vegetation is uniformly distributed in space (homogeneous) and in many cases that vegetation orientation is uniformly distributed (isotropic). It is known that these assumptions are violated in a wide range of canopies, as real canopies commonly have heterogeneity at multiple scales and almost always have highly anisotropic leaf angle distributions. However, it is not quantitatively known under what conditions these assumptions become problematic given the difficulty of robustly evaluating model results for a range of canopy architectures. In this study, assumptions of vegetation homogeneity and isotropy were evaluated under clear sky conditions for a range of virtually-generated crop canopies with the aid of a detailed three-dimensional, leaf-resolving radiation model. Results showed that Beer's law consistently over predicted light interception for all canopy configurations. For canopies where the plant spacing was comparable to the plant height, Beer's law performed poorly, and over predicted daily intercepted sunlight by up to ∼115%. For vegetation with a highly anisotropic leaf inclination distribution but a relatively isotropic leaf azimuth distribution, the assumption of canopy isotropy (i.e., G = 0.5) resulted in relatively small errors. However, if leaf elevation and azimuth were both highly anisotropic, the assumption of canopy isotropy could introduce significant errors depending on the orientation of the azimuthal anisotropy with respect to the sun's path
Observation of liquid–liquid phase transitions in ethane at 300 K
We have conducted Raman spectroscopy
experiments on liquid ethane (C2H6) at 300 K, obtaining a
large amount of data at very high resolution. This has enabled
the observation of Raman peaks expected but not previously
observed in liquid ethane and a detailed experimental study of
the liquid that was not previously possible. We have observed a
transition between rigid and nonrigid liquid states in liquid
ethane at ca. 250 MPa corresponding to the recently proposed
Frenkel line, a dynamic transition between rigid liquid
(liquidlike) and nonrigid liquid (gaslike) states beginning in
the subcritical region and extending to arbitrarily high pressure
and temperature. The observation of this transition in liquid
(subcritical) ethane allows a clear differentiation to be made
between the Frenkel line (beginning in the subcritical region at
higher density than the boiling line) and the Widom lines (emanating from the critical point and not existing in the subcritical
region). Furthermore, we observe a narrow transition at ca. 1000 MPa to a second rigid liquid state. We propose that this
corresponds to a state in which orientational order must exist to achieve the expected density and can view the transition in
analogy to the transition in the solid state away from the orientationally disordered phase I to the orientationally ordered phases
II and III
A Dual Read-Out Assay to Evaluate the Potency of Compounds Active against Mycobacterium tuberculosis
PMCID: PMC3617142This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Modular Nucleic Acid Assembled p/MHC Microarrays for Multiplexed Sorting of Antigen-Specific T Cells
The human immune system consists of a large number of T cells capable of recognizing and responding to antigens derived from various sources. The development of peptide-major histocompatibility (p/MHC) tetrameric complexes has enabled the direct detection of these antigen-specific T cells. With the goal of increasing throughput and multiplexing of T cell detection, protein microarrays spotted with defined p/MHC complexes have been reported, but studies have been limited due to the inherent instability and reproducibility of arrays produced via conventional spotted methods. Herein, we report on a platform for the detection of antigen-specific T cells on glass substrates that offers significant advantages over existing surface-bound schemes. In this approach, called “Nucleic Acid Cell Sorting (NACS)”, single-stranded DNA oligomers conjugated site-specifically to p/MHC tetramers are employed to immobilize p/MHC tetramers via hybridization to a complementary-printed substrate. Fully assembled p/MHC arrays are used to detect and enumerate T cells captured from cellular suspensions, including primary human T cells collected from cancer patients. NACS arrays outperform conventional spotted arrays assessed in key criteria such as repeatability and homogeneity. The versatility of employing DNA sequences for cell sorting is exploited to enable the programmed, selective release of target populations of immobilized T cells with restriction endonucleases for downstream analysis. Because of the performance, facile and modular assembly of p/MHC tetramer arrays, NACS holds promise as a versatile platform for multiplexed T cell detection
Attitudes towards the use and acceptance of eHealth technologies : a case study of older adults living with chronic pain and implications for rural healthcare
Acknowledgements The research described here is supported by the award made by the RCUK Digital Economy programme to the dot.rural Digital Economy Hub; award reference: EP/G066051/1. MC’s time writing the paper is funded by the Scottish Government’s Rural and Environmental Science and Analytical Services Division (RESAS) under Theme 8 ‘Vibrant Rural Communities’ of the Food, Land and People Programme (2011–2016). MC is also an Honorary Research Fellow at the Division of Applied Health Sciences, University of Aberdeen. The input of other members of the TOPS research team, Alastair Mort, Fiona Williams, Sophie Corbett, Phil Wilson and Paul MacNamee who contributed to be wider study and discussed preliminary findings reported here with the authors of the paper is acknowledged. We acknowledge the feedback on earlier versions of this paper provided by members of the Trans-Atlantic Rural Research Network, especially Stefanie Doebler and Carmen Hubbard. We also thank Deb Roberts for her comments.Peer reviewedPublisher PD
Magnetic-interference patterns in Josephson junctions with d+is symmetry
The magnetic interference pattern and the spontaneous flux in unconventional
Josephson junctions of superconductors with d+is symmetry are calculated for
different reduced junction lengths and the relative factor of the d and s wave
components. This is a time reversal broken symmetry state. We study the
stability of the fractional vortex and antivortex which are spontaneously
formed and examine their evolution as we change the length and the relative
factor of d and s wave components. The asymmetry in the field modulated
diffraction pattern exists for lengths as long as L=10\lambda_J.Comment: 8 pages, 6 eps files, submitted to PR
Nuclear receptors in vascular biology
Nuclear receptors sense a wide range of steroids and hormones (estrogens, progesterone, androgens, glucocorticoid, and mineralocorticoid), vitamins (A and D), lipid metabolites, carbohydrates, and xenobiotics. In response to these diverse but critically important mediators, nuclear receptors regulate the homeostatic control of lipids, carbohydrate, cholesterol, and xenobiotic drug metabolism, inflammation, cell differentiation and development, including vascular development. The nuclear receptor family is one of the most important groups of signaling molecules in the body and as such represent some of the most important established and emerging clinical and therapeutic targets. This review will highlight some of the recent trends in nuclear receptor biology related to vascular biology
- …
