5,793 research outputs found
Fragmentation functions of mesons in the Field-Feynman model
The fragmentation functions of the pion with distinction between
, , and are studied in the
Field-Feynman recursive model, by taking into account the flavor structure in
the excitation of quark-antiquark pairs by the initial quarks. The obtained
analytical results are compatible with available empirical results. The
framework is also extended to predict the fragmentation functions of the kaon
with distinction between , ,
, and . This work gives a significant
modification of the original model, and the predictions can be tested by future
experiments on the fragmentation functions of the kaon.Comment: 6 Latex pages, 10 figures, to appear in EPJ
On the Lorentz structure of the symmetry energy
We investigate in detail the density dependence of the symmetry energy in a
relativistic description by decomposing the iso-vector mean field into
contributions with different Lorentz covariant properties. We find important
effects of the iso-vector, scalar channel (i.e. -meson like) on the
high density behavior of the symmetry energy. Applications to static properties
of finite nuclei and to dynamic situations of heavy ion collisions are explored
and related to each other. The nuclear structure studies show only moderate
effects originating from the virtual meson. At variance, in heavy ion
collisions one finds important contributions on the reaction dynamics arising
from the different Lorentz structure of the high density symmetry energy when a
scalar iso-vector field is introduced. Particularly interesting is the
related neutron/proton effective mass splitting for nucleon transport effects
and for resonance and particle production around the threshold. We show that
the -like channel turns out to be essential for the production of
pions, when comparing with experimental data, in particular for high momentum
selections.Comment: 30 pages, 12 figures (.eps
Collective modes of asymmetric nuclear matter in Quantum HadroDynamics
We discuss a fully relativistic Landau Fermi liquid theory based on the
Quantum Hadro-Dynamics () effective field picture of Nuclear Matter
({\it NM}).
From the linearized kinetic equations we get the dispersion relations of the
propagating collective modes. We focus our attention on the dynamical effects
of the interplay between scalar and vector channel contributions. A beautiful
``mirror'' structure in the form of the dynamical response in the
isoscalar/isovector degree of freedom is revealed, with a complete parallelism
in the role respectively played by the compressibility and the symmetry energy.
All that strongly supports the introduction of an explicit coupling to the
scalar-isovector channel of the nucleon-nucleon interaction. In particular we
study the influence of this coupling (to a -meson-like effective field)
on the collective response of asymmetric nuclear matter (). Interesting
contributions are found on the propagation of isovector-like modes at normal
density and on an expected smooth transition to isoscalar-like oscillations at
high baryon density. Important ``chemical'' effects on the neutron-proton
structure of the mode are shown. For dilute we have the isospin
distillation mechanism of the unstable isoscalar-like oscillations, while at
high baryon density we predict an almost pure neutron wave structure of the
propagating sounds.Comment: 18 pages (LATEX), 8 Postscript figures, uses "epsfig
Scaling of anisotropy flows in intermediate energy heavy ion collisions
Anisotropic flows (, and ) of light nuclear clusters are
studied by a nucleonic transport model in intermediate energy heavy ion
collisions. The number-of-nucleon scalings of the directed flow () and
elliptic flow () are demonstrated for light nuclear clusters. Moreover,
the ratios of of nuclear clusters show a constant value of 1/2
regardless of the transverse momentum. The above phenomena can be understood by
the coalescence mechanism in nucleonic level and are worthy to be explored in
experiments.Comment: Invited talk at "IX International Conference on Nucleus-Nucleus
Collisions", Rio de Janeiro, Aug 28- Sept 1, 2006; to appear on the
proceeding issue in Nuclear Physics
Inclusive B-Meson Production in e^+ e^- and p p-bar Collisions
We provide nonperturbative fragmentation functions for B mesons, both at
leading and next-to-leading order in the MS-bar factorization scheme with five
massless quark flavors. They are determined by fitting the fractional energy
distribution of B mesons inclusively produced in e^+ e^- annihilation at CERN
LEP1. Theoretical predictions for the inclusive production of B mesons with
high transverse momenta in p p-bar scattering obtained with these fragmentation
functions nicely agree, both in shape and normalization, with data recently
taken at the Fermilab Tevatron.Comment: 20 pages (Latex), 6 figures (Postscript
Asymmetric nuclear matter in a Hartree-Fock approach to non-linear QHD
The Equation of State (EOS) for asymmetric nuclear matter is discussed
starting from a phenomenological hadronic field theory of Serot-Walecka type
including exchange terms. In a model with self interactions of the scalar
sigma-meson we show that the Fock terms naturally lead to isospin effects in
the nuclear EOS. These effects are quite large and dominate over the
contribution due to isovector mesons. We obtain a potential symmetry term of
"stiff" type, i.e. increasing with baryon density and an interesting behaviour
of neutron/proton effective masses of relevance for transport properties of
asymmetric dense matter.Comment: 12 pages (LATEX), 3 Postscript figures, revised versio
Multifragmentation and the liquid-gas phase transition: an experimental overview
Two roads are presently being followed in order to establish the existence of
a liquid-gas phase transition in finite nuclear systems from nuclear reactions
at high energy. The clean experiment of observing the thermodynamic properties
of a finite number of nucleons in a container is presently only possible with
the computer. Performed with advanced nuclear transport models, it has revealed
the first-order character of the transition and allowed the extraction of the
pertinent thermodynamic parameters. The validity of the applied theory is being
confirmed by comparing its predictions for heavy-ion reactions with exclusive
experiments.
The second approach is experimentally more direct. Signals of the transition
are searched for by analysing reaction data within the framework of
thermodynamics of small systems. A variety of potential signals has been
investigated and found to be qualitatively consistent with the expectations for
the phase transition. Many of them are well reproduced with percolation models
which places the nuclear fragmentation into the more general context of
partitioning phenomena in finite systems.
A wealth of new data on this subject has been obtained in recent experiments,
some of them with a new generation of multi-detector devices aiming at higher
resolutions, isotopic identification of the fragments, and the coincident
detection of neutrons. Isotopic effects in multifragmentation were addressed
quite intensively, with particular attention being given to their relation to
the symmetry energy and its dependence on density.Comment: 10 pages, 7 figures, Contribution to Proceedings of INPC2004,
Goeteborg, Sweden, June 27 - July 2, 200
An Investigation of Hadronization Mechanism at Factory
We briefly review the hadronization pictures adopted in the LUND String
Fragmentation Model(LSFM), Webber Cluster Fragmentation Model(WCFM) and Quark
Combination Model(QCM), respectively. Predictions of hadron multiplicity,
baryon to meson ratios and baryon-antibaryon flavor correlations, especially
related to heavy hadrons at factory obtained by LSFM and QCM are
reported.Comment: 18 pages, 6 figures. accepted by Sci China Phys Mech Astro
Evidence for Two Modes of Synergistic Induction of Apoptosis by Mapatumumab and Oxaliplatin in Combination with Hyperthermia in Human Colon Cancer Cells
Colorectal cancer is the third leading cause of cancer-related mortality in the world-- the main cause of death from colorectal cancer is hepatic metastases, which can be treated with isolated hepatic perfusion (IHP). Searching for the most clinically relevant approaches for treating colorectal metastatic disease by isolated hepatic perfusion (IHP), we developed the application of oxaliplatin concomitantly with hyperthermia and humanized death receptor 4 (DR4) antibody mapatumumab (Mapa), and investigated the molecular mechanisms of this multimodality treatment in human colon cancer cell lines CX-1 and HCT116 as well as human colon cancer stem cells Tu-12, Tu-21 and Tu-22. We showed here, in this study, that the synergistic effect of the multimodality treatment-induced apoptosis was caspase dependent and activated death signaling via both the extrinsic apoptotic pathway and the intrinsic pathway. Death signaling was activated by c-Jun N-terminal kinase (JNK) signaling which led to Bcl-xL phosphorylation at serine 62, decreasing the anti-apoptotic activity of Bcl-xL, which contributed to the intrinsic pathway. The downregulation of cellular FLICE inhibitory protein long isoform (c-FLIPL) in the extrinsic pathway was accomplished through ubiquitination at lysine residue (K) 195 and protein synthesis inhibition. Overexpression of c-FLIPL mutant (K195R) and Bcl-xL mutant (S62A) completely abrogated the synergistic effect. The successful outcome of this study supports the application of multimodality strategy to patients with colorectal hepatic metastases who fail to respond to standard chemoradiotherapy that predominantly targets the mitochondrial apoptotic pathway. © 2013 Song et al
Monosodium urate crystals promote innate anti-mycobacterial immunity and improve BCG efficacy as a vaccine against tuberculosis
A safer and more effective anti-Tuberculosis vaccine is still an urgent need. We probed the effects of monosodium urate crystals (MSU) on innate immunity to improve the Bacille Calmette-Guerin (BCG) vaccination. Results showed that in vitro MSU cause an enduring macrophage stimulation of the anti-mycobacterial response, measured as intracellular killing, ROS production and phagolysosome maturation. The contribution of MSU to anti-mycobacterial activity was also shown in vivo. Mice vaccinated in the presence of MSU showed a lower number of BCG in lymph nodes draining the vaccine inoculation site, in comparison to mice vaccinated without MSU. Lastly, we showed that MSU improved the efficacy of BCG vaccination in mice infected with Mycobacterium tuberculosis (MTB), measured in terms of lung and spleen MTB burden. These results demonstrate that the use of MSU as adjuvant may represent a novel strategy to enhance the efficacy of BCG vaccination
- …
