2,653 research outputs found

    Paging: a Collection of Short Stories

    Get PDF
    Introduction: Paging is a series of thematically interconnected short stories that take place at a single fictional urban hospital center. The guiding questions that the stories explore are twofold: other than doctors and patients, what kinds of people spend their time in a hospital? And, what kind of place is the hospital for these people? Methods: The background research for Paging began by exploring written works of fiction, nonfiction, and memoir set in hospitals. After I had developed a set of guiding research questions, I spent the summer at a major hospital in New York City, where I was able to observe the people and employees that comprised the environment of an urban medical center. These observations were used draft fiction about the kinds of dilemmas various characters in a hospital might grapple with on a daily basis. Results: Paging is a series of three short stories that explore the lives of three different hospital employees at the same hospital center. The first story is about a medical assistant at an outpatient clinic who encounters an ethical dilemma that brings his personal life to work. The second is about a custodian who gets to know the patients of a hospital in a very different, but equally intimate, manner to the doctors and nurses who take care of the patients’ medical needs. The third is about a woman who assists in the distribution of organs that have been harvested for transplant. Discussion: We often think of the hospital as a place where patients go to seek care from doctors. In reality, the hospital is a far richer environment than this. Paging explores the other inhabitants of a hospital that allow it to be a bustling ecosystem, and offers stories from perspectives that are often overlooked

    New mean field theories for the liquid-vapor transition of charged hard spheres

    Full text link
    The phase behavior of the primitive model of electrolytes is studied in the framework of various mean field approximations obtained recently by means of methods pertaining to statistical field theory (CAILLOL, J.-M., 2004, \textit{J. Stat. Phys.}, \textbf{115}, 1461). The role of the regularization of the Coulomb potential at short distances is discussed in details and the link with more traditional approximations of the theory of liquids is discussed. The values computed for the critical temperatures, chemical potentials, and densities are compared with available Monte Carlo data and other theoretical predictions.Comment: 17 pages, 4 figures, 3 table

    Older adults experiences of rehabilitation in acute health care

    Get PDF
    Rehabilitation is a key component of nursing and allied healthcare professionals’ roles in most health and social care settings. This paper reports on stage 2 of an action research project to ascertain older adult's experience of rehabilitation. Twenty postdischarge interviews were conducted and the interview transcripts were analysed using thematic content analysis. All older adults discharged from an acute older acute rehabilitation ward to their own homes in the community were eligible to participate. The only exclusion criterion was older adults who were thought to be unable to give consent to participate by the nurse in charge and the researcher. Whilst 92 older adults were eligible to participate in this research study, only 20 were interviewed. The findings from this study suggest that older adults valued communication with health professionals but were aware of their time constraints that hindered communication. This study suggests that both nurses and allied health professionals are not actively providing rehabilitative services to promote health and well-being, which contradicts the focus of active ageing. Furthermore, there was evidence of unmet needs on discharge, and older adults unable to recall the professions that were involved in their interventions and the rationale for therapy input. It is suggested that further research is needed to explore the effectiveness of allied health rehabilitation in the acute setting. This study highlights the need for further research into older adults’ perceptions of the rehabilitation process in the acute setting

    In search of lost introns

    Full text link
    Many fundamental questions concerning the emergence and subsequent evolution of eukaryotic exon-intron organization are still unsettled. Genome-scale comparative studies, which can shed light on crucial aspects of eukaryotic evolution, require adequate computational tools. We describe novel computational methods for studying spliceosomal intron evolution. Our goal is to give a reliable characterization of the dynamics of intron evolution. Our algorithmic innovations address the identification of orthologous introns, and the likelihood-based analysis of intron data. We discuss a compression method for the evaluation of the likelihood function, which is noteworthy for phylogenetic likelihood problems in general. We prove that after O(nL)O(nL) preprocessing time, subsequent evaluations take O(nL/logL)O(nL/\log L) time almost surely in the Yule-Harding random model of nn-taxon phylogenies, where LL is the input sequence length. We illustrate the practicality of our methods by compiling and analyzing a data set involving 18 eukaryotes, more than in any other study to date. The study yields the surprising result that ancestral eukaryotes were fairly intron-rich. For example, the bilaterian ancestor is estimated to have had more than 90% as many introns as vertebrates do now

    Mott Transition vs Multicritical Phenomenon of Superconductivity and Antiferromagnetism -- Application to κ\kappa-(BEDT-TTF)2_2X --

    Full text link
    Interplay between the Mott transition and the multicritical phenomenon of d-wave superconductivity (SC) and antiferromagnetism (AF) is studied theoretically. We describe the Mott transition, which is analogous to a liquid-gas phase transition, in terms of an Ising-type order parameter η\eta. We reveal possible mean-field phase diagrams produced by this interplay. Renormalization group analysis up to one-loop order gives flows of coupling constants, which in most cases lead to fluctuation-induced first-order phase transitions even when the SO(5) symmetry exists betwen the SC and AF. Behaviors of various physical quantities around the Mott critical point are predicted. Experiments in κ\kappa-(BEDT-TTF)2_2X are discussed from this viewpoint.Comment: 4 pages, 9 figures, to appear in J. Phys. Soc. Jp

    Exact Renormalization Group Equations. An Introductory Review

    Full text link
    We critically review the use of the exact renormalization group equations (ERGE) in the framework of the scalar theory. We lay emphasis on the existence of different versions of the ERGE and on an approximation method to solve it: the derivative expansion. The leading order of this expansion appears as an excellent textbook example to underline the nonperturbative features of the Wilson renormalization group theory. We limit ourselves to the consideration of the scalar field (this is why it is an introductory review) but the reader will find (at the end of the review) a set of references to existing studies on more complex systems.Comment: Final version to appear in Phys. Rep.; Many references added, section 4.2 added, minor corrections. 65 pages, 6 fig

    Supersymmetric Chern-Simons Theories with Vector Matter

    Full text link
    In this paper we discuss SU(N) Chern-Simons theories at level k with both fermionic and bosonic vector matter. In particular we present an exact calculation of the free energy of the N=2 supersymmetric model (with one chiral field) for all values of the 't Hooft coupling in the large N limit. This is done by using a generalization of the standard Hubbard-Stratanovich method because the SUSY model contains higher order polynomial interactions.Comment: 46 pages, 24 figures, v2: comments and references added, v3: a footnote in Section 3.5 adde

    Digital Quantum Simulation with Rydberg Atoms

    Full text link
    We discuss in detail the implementation of an open-system quantum simulator with Rydberg states of neutral atoms held in an optical lattice. Our scheme allows one to realize both coherent as well as dissipative dynamics of complex spin models involving many-body interactions and constraints. The central building block of the simulation scheme is constituted by a mesoscopic Rydberg gate that permits the entanglement of several atoms in an efficient, robust and quick protocol. In addition, optical pumping on ancillary atoms provides the dissipative ingredient for engineering the coupling between the system and a tailored environment. As an illustration, we discuss how the simulator enables the simulation of coherent evolution of quantum spin models such as the two-dimensional Heisenberg model and Kitaev's toric code, which involves four-body spin interactions. We moreover show that in principle also the simulation of lattice fermions can be achieved. As an example for controlled dissipative dynamics, we discuss ground state cooling of frustration-free spin Hamiltonians.Comment: submitted to special issue "Quantum Information with Neutral Particles" of "Quantum Information Processing
    corecore