110 research outputs found
Silicon-based spin and charge quantum computation
Silicon-based quantum-computer architectures have attracted attention because
of their promise for scalability and their potential for synergetically
utilizing the available resources associated with the existing Si technology
infrastructure. Electronic and nuclear spins of shallow donors (e.g.
phosphorus) in Si are ideal candidates for qubits in such proposals due to the
relatively long spin coherence times. For these spin qubits, donor electron
charge manipulation by external gates is a key ingredient for control and
read-out of single-qubit operations, while shallow donor exchange gates are
frequently invoked to perform two-qubit operations. More recently, charge
qubits based on tunnel coupling in P substitutional molecular ions in Si
have also been proposed. We discuss the feasibility of the building blocks
involved in shallow donor quantum computation in silicon, taking into account
the peculiarities of silicon electronic structure, in particular the six
degenerate states at the conduction band edge. We show that quantum
interference among these states does not significantly affect operations
involving a single donor, but leads to fast oscillations in electron exchange
coupling and on tunnel-coupling strength when the donor pair relative position
is changed on a lattice-parameter scale. These studies illustrate the
considerable potential as well as the tremendous challenges posed by donor spin
and charge as candidates for qubits in silicon.Comment: Review paper (invited) - to appear in Annals of the Brazilian Academy
of Science
Driven coherent oscillations of a single electron spin in a quantum dot
The ability to control the quantum state of a single electron spin in a
quantum dot is at the heart of recent developments towards a scalable
spin-based quantum computer. In combination with the recently demonstrated
exchange gate between two neighbouring spins, driven coherent single spin
rotations would permit universal quantum operations. Here, we report the
experimental realization of single electron spin rotations in a double quantum
dot. First, we apply a continuous-wave oscillating magnetic field, generated
on-chip, and observe electron spin resonance in spin-dependent transport
measurements through the two dots. Next, we coherently control the quantum
state of the electron spin by applying short bursts of the oscillating magnetic
field and observe about eight oscillations of the spin state (so-called Rabi
oscillations) during a microsecond burst. These results demonstrate the
feasibility of operating single-electron spins in a quantum dot as quantum
bits.Comment: Total 25 pages. 11 pages main text, 5 figures, 9 pages supplementary
materia
Shot noise in mesoscopic systems
This is a review of shot noise, the time-dependent fluctuations in the
electrical current due to the discreteness of the electron charge, in small
conductors. The shot-noise power can be smaller than that of a Poisson process
as a result of correlations in the electron transmission imposed by the Pauli
principle. This suppression takes on simple universal values in a symmetric
double-barrier junction (suppression factor 1/2), a disordered metal (factor
1/3), and a chaotic cavity (factor 1/4). Loss of phase coherence has no effect
on this shot-noise suppression, while thermalization of the electrons due to
electron-electron scattering increases the shot noise slightly. Sub-Poissonian
shot noise has been observed experimentally. So far unobserved phenomena
involve the interplay of shot noise with the Aharonov-Bohm effect, Andreev
reflection, and the fractional quantum Hall effect.Comment: 37 pages, Latex, 10 figures (eps). To be published in "Mesoscopic
Electron Transport," edited by L. P. Kouwenhoven, G. Schoen, and L. L. Sohn,
NATO ASI Series E (Kluwer Academic Publishing, Dordrecht
Ultrafast optical control of entanglement between two quantum dot spins
The interaction between two quantum bits enables entanglement, the
two-particle correlations that are at the heart of quantum information science.
In semiconductor quantum dots much work has focused on demonstrating single
spin qubit control using optical techniques. However, optical control of
entanglement of two spin qubits remains a major challenge for scaling from a
single qubit to a full-fledged quantum information platform. Here, we combine
advances in vertically-stacked quantum dots with ultrafast laser techniques to
achieve optical control of the entangled state of two electron spins. Each
electron is in a separate InAs quantum dot, and the spins interact through
tunneling, where the tunneling rate determines how rapidly entangling
operations can be performed. The two-qubit gate speeds achieved here are over
an order of magnitude faster than in other systems. These results demonstrate
the viability and advantages of optically controlled quantum dot spins for
multi-qubit systems.Comment: 24 pages, 5 figure
Spin dynamics in semiconductors
This article reviews the current status of spin dynamics in semiconductors
which has achieved a lot of progress in the past years due to the fast growing
field of semiconductor spintronics. The primary focus is the theoretical and
experimental developments of spin relaxation and dephasing in both spin
precession in time domain and spin diffusion and transport in spacial domain. A
fully microscopic many-body investigation on spin dynamics based on the kinetic
spin Bloch equation approach is reviewed comprehensively.Comment: a review article with 193 pages and 1103 references. To be published
in Physics Reports
Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study
Background: Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. // Methods: We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung's disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. // Findings: We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung's disease) from 264 hospitals (89 in high-income countries, 166 in middle-income countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in low-income countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. // Interpretation: Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between low-income, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030
Artificial urinary sphincter for urinary incontinence after radical prostatectomy: a historical cohort from 2004 to 2015
ABSTRACT This study aimed to retrospectively evaluate a cohort of patients with prostate cancer and persistent urinary incontinence after radical prostatectomy. From January 2004 to December 2015, eighty-six individuals were identified to have received an AUS implant, provided by a private nonprofit HMO operating in Belo Horizonte, Brazil. On total, there were 91 AUS implants, with a median interval between radical prostatectomy and AUS implant of 3.6 years (IQR 1.9 to 5.5). The rate of AUS cumulative survival, after a median follow-up of 4.1 years (IQR 1.7-7.2 years), was 44% (n=40). The median survival of AUS implants was 2.9 years (IQR 0.5-7.9 years). Thirty-seven AUS implants (40.7%) resulted in grade III surgical complications. There were 5 deaths at 2.1, 4.7, 5.7, 5.7 and 6.5 years of follow-up, but none due to causes directly associated to the AUS implant. Persistent severe incontinence was documented in 14 (15.3%) additional patients. From the 51 AUS implants which resulted in grade III surgical complications or persistent severe incontinence, 24 (47.1%) underwent surgical revisions. Explantation of the sphincter or its components was observed in 6 cases (25.0%). Mechanical failure, described as fluid loss and/or inability to recycle the AUS device, was observed in 4 devices (16.7%). In conclusion, although AUS implants are recommended as the gold-standard treatment of severe urinary incontinence after prostatectomy, the observed high rates of malfunction and grade III adverse events are a matter of concern warranting further assessment on the safety and efficacy of these devices
Recommended from our members
Emotion and Physiology in Context - Amendment: PHEA
Maturational changes in emotional experience have primarily been attributed to age-related shifts in psychological processes like attention, memory, motivation, control, and self-regulation. Here we test a complimentary set of hypotheses: that age-related shift in peripheral systems (i.e., the autonomic nervous system) and the allostatic interoceptive brain network (AIN) result in decreased interoceptive ability and, in turn, reduced emotional intensity and poorer emotion-based decision making
- …
