40 research outputs found

    A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa

    Get PDF
    Observations and simulations link anthropogenic greenhouse and aerosol emissions with rapidly increasing Indian Ocean sea surface temperatures (SSTs). Over the past 60 years, the Indian Ocean warmed two to three times faster than the central tropical Pacific, extending the tropical warm pool to the west by ~40° longitude (><4,000 km). This propensity toward rapid warming in the Indian Ocean has been the dominant mode of interannual variability among SSTs throughout the tropical Indian and Pacific Oceans (55°E–140°W) since at least 1948, explaining more variance than anomalies associated with the El Niño-Southern Oscillation (ENSO). In the atmosphere, the primary mode of variability has been a corresponding trend toward greatly increased convection and precipitation over the tropical Indian Ocean. The temperature and rainfall increases in this region have produced a westward extension of the western, ascending branch of the atmospheric Walker circulation. Diabatic heating due to increased mid-tropospheric water vapor condensation elicits a westward atmospheric response that sends an easterly flow of dry air aloft toward eastern Africa. In recent decades (1980–2009), this response has suppressed convection over tropical eastern Africa, decreasing precipitation during the ‘long-rains’ season of March–June. This trend toward drought contrasts with projections of increased rainfall in eastern Africa and more ‘El Niño-like’ conditions globally by the Intergovernmental Panel on Climate Change. Increased Indian Ocean SSTs appear likely to continue to strongly modulate the Warm Pool circulation, reducing precipitation in eastern Africa, regardless of whether the projected trend in ENSO is realized. These results have important food security implications, informing agricultural development, environmental conservation, and water resource planning

    Evaluation of three global gridded precipitation data sets in central Asia based on rain gauge observations

    No full text
    The accuracies of gridded precipitation data sets are important for regional climate studies and hydrological models. In this study, the performances of Global Precipitation Climatology Centre (GPCC) V7, Climatic Research Unit (CRU) TS 3.22 and Willmott and Matsuura (WM) precipitation data sets were examined over central Asia by comparing them against observed precipitation records (OBS) from 586 meteorological stations during 1901-2010. The results show that all the three gridded data sets underestimated the observed precipitation at annual and monthly scales, especially in mountainous areas. Both GPCC and WM underestimated seasonal precipitation, especially for spring precipitation. Among the three gridded data sets, GPCC had the highest correlation and lowest bias compared with CRU and WM when against the OBS. WM had a higher correlation than that of CRU, and its bias was larger than that of CRU. In terms of the drought and heavy rainfall events, CRU had the best performance in capturing drought events, and GPCC was best at representing heavy rainfall events. These differences in the performances between the three gridded data sets were primarily induced by their different interpolation methods and the numbers of available meteorological stations used in the interpolations of the three gridded data sets. Therefore, compared to the other two data sets, GPCC is more suitable for studies of long-term precipitation variations over central Asia
    corecore