3,113 research outputs found
Flavour Changing Neutral Currents, Weak-Scale Scalars and Rare Top Decays
We examine the decays and in the Standard
Model with an extra scalar doublet and no discrete symmetry preventing
tree-level flavour changing neutral currents. The Yukawa couplings of the new
scalars are assumed to be proportional to fermion masses, evading bounds on
FCNC's from the light quark sector. These rare top decays may be visible at the
SSC.Comment: (some wording changed, and several references added) 13 pages, 2
figures included, uses harvmac.tex and epsf.tex, UCSD/PTH 93-0
Mermin-Wagner physics, (H,T) phase diagram, and candidate quantum spin-liquid phase in the spin-1/2 triangular-lattice antiferromagnet Ba8CoNb6O24
BaCoNbO presents a system whose Co ions have an
effective spin 1/2 and construct a regular triangular-lattice antiferromagnet
(TLAFM) with a very large interlayer spacing, ensuring purely two-dimensional
character. We exploit this ideal realization to perform a detailed experimental
analysis of the TLAFM, which is one of the keystone models in
frustrated quantum magnetism. We find strong low-energy spin fluctuations and
no magnetic ordering, but a diverging correlation length down to 0.1 K,
indicating a Mermin-Wagner trend towards zero-temperature order. Below 0.1 K,
however, our low-field measurements show an nexpected magnetically disordered
state, which is a candidate quantum spin liquid. We establish the phase
diagram, mapping in detail the quantum fluctuation corrections to the available
theoretical analysis. These include a strong upshift in field of the maximum
ordering temperature, qualitative changes to both low- and high-field phase
boundaries, and an ordered regime apparently dominated by the collinear
"up-up-down" state. BaCoNbO therefore offers fresh input for the
development of theoretical approaches to the field-induced quantum phase
transitions of the Heisenberg TLAFM.Comment: 14 pages, 4 figures; replacement and qualitative extension of
arXiv:1612.05217, now including full field-temperature phase diagram and
sighting of anomalous QSL candidat
A Feynman integral in Lifshitz-point and Lorentz-violating theories in R<sup>D</sup> ⨁ R<i><sup>m</sup></i>
We evaluate a 1-loop, 2-point, massless Feynman integral ID,m(p,q) relevant for perturbative field theoretic calculations in strongly anisotropic d=D+m dimensional spaces given by the direct sum RD ⨁ Rm . Our results are valid in the whole convergence region of the integral for generic (noninteger) codimensions D and m. We obtain series expansions of ID,m(p,q) in terms of powers of the variable X:=4p2/q4, where p=|p|, q=|q|, p Є RD, q Є Rm, and in terms of generalised hypergeometric functions 3F2(−X), when X<1. These are subsequently analytically continued to the complementary region X≥1. The asymptotic expansion in inverse powers of X1/2 is derived. The correctness of the results is supported by agreement with previously known special cases and extensive numerical calculations
Toward optimal implementation of cancer prevention and control programs in public health: A study protocol on mis-implementation
Abstract Background Much of the cancer burden in the USA is preventable, through application of existing knowledge. State-level funders and public health practitioners are in ideal positions to affect programs and policies related to cancer control. Mis-implementation refers to ending effective programs and policies prematurely or continuing ineffective ones. Greater attention to mis-implementation should lead to use of effective interventions and more efficient expenditure of resources, which in the long term, will lead to more positive cancer outcomes. Methods This is a three-phase study that takes a comprehensive approach, leading to the elucidation of tactics for addressing mis-implementation. Phase 1: We assess the extent to which mis-implementation is occurring among state cancer control programs in public health. This initial phase will involve a survey of 800 practitioners representing all states. The programs represented will span the full continuum of cancer control, from primary prevention to survivorship. Phase 2: Using data from phase 1 to identify organizations in which mis-implementation is particularly high or low, the team will conduct eight comparative case studies to get a richer understanding of mis-implementation and to understand contextual differences. These case studies will highlight lessons learned about mis-implementation and identify hypothesized drivers. Phase 3: Agent-based modeling will be used to identify dynamic interactions between individual capacity, organizational capacity, use of evidence, funding, and external factors driving mis-implementation. The team will then translate and disseminate findings from phases 1 to 3 to practitioners and practice-related stakeholders to support the reduction of mis-implementation. Discussion This study is innovative and significant because it will (1) be the first to refine and further develop reliable and valid measures of mis-implementation of public health programs; (2) bring together a strong, transdisciplinary team with significant expertise in practice-based research; (3) use agent-based modeling to address cancer control implementation; and (4) use a participatory, evidence-based, stakeholder-driven approach that will identify key leverage points for addressing mis-implementation among state public health programs. This research is expected to provide replicable computational simulation models that can identify leverage points and public health system dynamics to reduce mis-implementation in cancer control and may be of interest to other health areas
Practical use of variational principles for modeling water waves
This paper describes a method for deriving approximate equations for
irrotational water waves. The method is based on a 'relaxed' variational
principle, i.e., on a Lagrangian involving as many variables as possible. This
formulation is particularly suitable for the construction of approximate water
wave models, since it allows more freedom while preserving the variational
structure. The advantages of this relaxed formulation are illustrated with
various examples in shallow and deep waters, as well as arbitrary depths. Using
subordinate constraints (e.g., irrotationality or free surface impermeability)
in various combinations, several model equations are derived, some being
well-known, other being new. The models obtained are studied analytically and
exact travelling wave solutions are constructed when possible.Comment: 30 pages, 1 figure, 62 references. Other author's papers can be
downloaded at http://www.denys-dutykh.com
The Impact of QCD and Light-Cone Quantum Mechanics on Nuclear Physics
We discuss a number of novel applications of Quantum Chromodynamics to
nuclear structure and dynamics, such as the reduced amplitude formalism for
exclusive nuclear amplitudes. We particularly emphasize the importance of
light-cone Hamiltonian and Fock State methods as a tool for describing the
wavefunctions of composite relativistic many-body systems and their
interactions. We also show that the use of covariant kinematics leads to
nontrivial corrections to the standard formulae for the axial, magnetic, and
quadrupole moments of nucleons and nuclei.Comment: 25 pages, uuencoded postscript file---To obtain a hard copy of this
paper, send e-mail to [email protected] and ask fo
Time reversal symmetry breaking superconductivity
We study time reversal symmetry breaking superconductivity with ( or )
symmetries. It is shown that the behavior of such superconductors could be {\em
qualitatively} different depending on the minor components () and its
phase at lower temperatures. It is argued that such {\em qualitatively
different} behaviors in thermal as well as in angular dependencies could be a
{\em source} of consequences in transport and Josephson physics.
Orthorhombicity is found to be a strong mechanism for mixed phase (in case of
). We show that due to electron correlation the order parameter is
more like a pure symmetry near optimum doping.Comment: 5 pages, 5 figures (attached), to be published in Physical Review
Provision of foot health services for people with rheumatoid arthritis in New South Wales: a web-based survey of local podiatrists
Background: It is unclear if podiatric foot care for people with rheumatoid arthritis (RA) in New South Wales (NSW) meets current clinical recommendations. The objective of this study was to survey podiatrists' perceptions of the nature of podiatric foot care provision for people who have RA in NSW.Methods: An anonymous, cross-sectional survey with a web-based questionnaire was conducted. The survey questionnaire was developed according to clinical experience and current foot care recommendations. State registered podiatrists practising in the state of NSW were invited to participate. The survey link was distributed initially via email to members of the Australian Podiatry Association (NSW), and distributed further through snowballing techniques using professional networks. Data was analysed to assess significant associations between adherence to clinical practice guidelines, and private/public podiatry practices.Results: 86 podiatrists participated in the survey (78% from private practice, 22% from public practice). Respondents largely did not adhere to formal guidelines to manage their patients (88%). Only one respondent offered a dedicated service for patients with RA. Respondents indicated that the primary mode of accessing podiatry was by self-referral (68%). Significant variation was observed regarding access to disease and foot specific assessments and treatment strategies. Assessment methods such as administration of patient reported outcome measures, vascular and neurological assessments were not conducted by all respondents. Similarly, routine foot care strategies such as prescription of foot orthoses, foot health advice and footwear were not employed by all respondents.Conclusions: The results identified issues in foot care provision which should be explored through further research. Foot care provision in NSW does not appear to meet the current recommended standards for the management of foot problems in people who have RA. Improvements to foot care could be undertaken in terms of providing better access to examination techniques and treatment strategies that are recommended by evidence based treatment paradigms. © 2013 Hendry et al.; licensee BioMed Central Ltd
Light-Cone Quantization and Hadron Structure
In this talk, I review the use of the light-cone Fock expansion as a
tractable and consistent description of relativistic many-body systems and
bound states in quantum field theory and as a frame-independent representation
of the physics of the QCD parton model. Nonperturbative methods for computing
the spectrum and LC wavefunctions are briefly discussed. The light-cone Fock
state representation of hadrons also describes quantum fluctuations containing
intrinsic gluons, strangeness, and charm, and, in the case of nuclei, "hidden
color". Fock state components of hadrons with small transverse size, such as
those which dominate hard exclusive reactions, have small color dipole moments
and thus diminished hadronic interactions; i.e., "color transparency". The use
of light-cone Fock methods to compute loop amplitudes is illustrated by the
example of the electron anomalous moment in QED. In other applications, such as
the computation of the axial, magnetic, and quadrupole moments of light nuclei,
the QCD relativistic Fock state description provides new insights which go well
beyond the usual assumptions of traditional hadronic and nuclear physics.Comment: LaTex 36 pages, 3 figures. To obtain a copy, send e-mail to
[email protected]
Simple matrix models for random Bergman metrics
Recently, the authors have proposed a new approach to the theory of random
metrics, making an explicit link between probability measures on the space of
metrics on a Kahler manifold and random matrix models. We consider simple
examples of such models and compute the one and two-point functions of the
metric. These geometric correlation functions correspond to new interesting
types of matrix model correlators. We study a large class of examples and
provide in particular a detailed study of the Wishart model.Comment: 23 pages, IOP Latex style, diastatic function Eq. (22) and contact
terms in Eqs. (76, 95) corrected, typos fixed. Accepted to JSTA
- …
