75 research outputs found
Towards the critical behavior for the light nuclei by NIMROD detector
The critical behavior for the light nuclei with A has been
investigated experimentally by the NIMROD multi-detectors. The wide variety of
observables indicate the critical point has been reached in the disassembly of
hot nuclei at an excitation energy of 5.60.5 MeV/u.Comment: 4 pages, 2 figures; Proceeding of 18th Nuclear Physics Division
Conference of the Euro. Phys. Society (NPDC18) "Phase transitions in strongly
interacting matter", Prague, 23.8.-29.8. 2004. To be published in Nuclear
Physics
Critical Behavior in Light Nuclear Systems: Experimental Aspects
An extensive experimental survey of the features of the disassembly of a
small quasi-projectile system with 36, produced in the reactions of 47
MeV/nucleon Ar + Al, Ti and Ni, has been carried
out. Nuclei in the excitation energy range of 1-9 MeV/u have been investigated
employing a new method to reconstruct the quasi-projectile source. At an
excitation energy 5.6 MeV/nucleon many observables indicate the presence
of maximal fluctuations in the de-excitation processes. The fragment
topological structure shows that the rank sorted fragments obey Zipf's law at
the point of largest fluctuations providing another indication of a liquid gas
phase transition. The caloric curve for this system shows a monotonic increase
of temperature with excitation energy and no apparent plateau. The temperature
at the point of maximal fluctuations is MeV. Taking this
temperature as the critical temperature and employing the caloric curve
information we have extracted the critical exponents , and
from the data. Their values are also consistent with the values of the
universality class of the liquid gas phase transition. Taken together, this
body of evidence strongly suggests a phase change in an equilibrated mesoscopic
system at, or extremely close to, the critical point.Comment: Physical Review C, in press; some discussions about the validity of
excitation energy in peripheral collisions have been added; 24 pages and 32
figures; longer abstract in the preprin
Sequential Decay Distortion of Goldhaber Model Widths for Spectator Fragments
Momentum widths of the primary fragments and observed final fragments have
been investigated within the framework of an Antisymmetrized Molecular Dynamics
transport model code (AMD-V) with a sequential decay afterburner (GEMINI). It
is found that the secondary evaporation effects cause the values of a reduced
momentum width, , derived from momentum widths of the final fragments
to be significantly less than those appropriate to the primary fragment but
close to those observed in many experiments. Therefore, a new interpretation
for experiemental momentum widths of projectile-like fragments is presented.Comment: 4 pages, 3 figs. Accepted for publication in Phys. Rev. C as a Rapid
Communicatio
Sequential Decay Distortion of Goldhaber Model Widths for Spectator Fragments
Momentum widths of the primary fragments and observed final fragments have
been investigated within the framework of an Antisymmetrized Molecular Dynamics
transport model code (AMD-V) with a sequential decay afterburner (GEMINI). It
is found that the secondary evaporation effects cause the values of a reduced
momentum width, , derived from momentum widths of the final fragments
to be significantly less than those appropriate to the primary fragment but
close to those observed in many experiments. Therefore, a new interpretation
for experiemental momentum widths of projectile-like fragments is presented.Comment: 4 pages, 3 figs. Accepted for publication in Phys. Rev. C as a Rapid
Communicatio
Tracing the Evolution of Temperature in Near Fermi Energy Heavy Ion Collisions
The kinetic energy variation of emitted light clusters has been employed as a
clock to explore the time evolution of the temperature for thermalizing
composite systems produced in the reactions of 26A, 35A and 47A MeV Zn
with Ni, Mo and Au. For each system investigated, the
double isotope ratio temperature curve exhibits a high maximum apparent
temperature, in the range of 10-25 MeV, at high ejectile velocity. These
maximum values increase with increasing projectile energy and decrease with
increasing target mass. The time at which the maximum in the temperature curve
is reached ranges from 80 to 130 fm/c after contact. For each different target,
the subsequent cooling curves for all three projectile energies are quite
similar. Temperatures comparable to those of limiting temperature systematics
are reached 30 to 40 fm/c after the times corresponding to the maxima, at a
time when AMD-V transport model calculations predict entry into the final
evaporative or fragmentation stage of de-excitation of the hot composite
systems. Evidence for the establishment of thermal and chemical equilibrium is
discussed.Comment: 9 pages, 5 figure
Evidence of Critical Behavior in the Disassembly of Nuclei with A ~ 36
A wide variety of observables indicate that maximal fluctuations in the
disassembly of hot nuclei with A ~ 36 occur at an excitation energy of 5.6 +-
0.5 MeV/u and temperature of 8.3 +- 0.5 MeV. Associated with this point of
maximal fluctuations are a number of quantitative indicators of apparent
critical behavior. The associated caloric curve does not appear to show a
flattening such as that seen for heavier systems. This suggests that, in
contrast to similar signals seen for liquid-gas transitions in heavier nuclei,
the observed behavior in these very light nuclei is associated with a
transition much closer to the critical point.Comment: v2: Major changes, new model calculations, new figure
A Ghoshal-like Test of Equilibration in Near-Fermi-Energy Heavy Ion Collisions
Calorimetric and coalescence techniques have been employed to probe
equilibration for hot nuclei produced in heavy ion collisions of 35 to 55 MeV/u
projectiles with medium mass targets. Entrance channel mass asymmetries and
energies were selected in order that very hot composite nuclei of similar mass
and excitation would remain after early stage pre-equilibrium particle
emission. Inter-comparison of the properties and de-excitation patterns for
these different systems provides evidence for the production of hot nuclei with
decay patterns relatively independent of the specific entrance channel.Comment: 7 pages, 2 figure
Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials
Recent years witnessed a rapid growth of interest of scientific and
engineering communities to thermal properties of materials. Carbon allotropes
and derivatives occupy a unique place in terms of their ability to conduct
heat. The room-temperature thermal conductivity of carbon materials span an
extraordinary large range - of over five orders of magnitude - from the lowest
in amorphous carbons to the highest in graphene and carbon nanotubes. I review
thermal and thermoelectric properties of carbon materials focusing on recent
results for graphene, carbon nanotubes and nanostructured carbon materials with
different degrees of disorder. A special attention is given to the unusual size
dependence of heat conduction in two-dimensional crystals and, specifically, in
graphene. I also describe prospects of applications of graphene and carbon
materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe
A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279
It is widely accepted that strong and variable radiation detected over all
accessible energy bands in a number of active galaxies arises from a
relativistic, Doppler-boosted jet pointing close to our line of sight. The size
of the emitting zone and the location of this region relative to the central
supermassive black hole are, however, poorly known, with estimates ranging from
light-hours to a light-year or more. Here we report the coincidence of a
gamma-ray flare with a dramatic change of optical polarization angle. This
provides evidence for co-spatiality of optical and gamma-ray emission regions
and indicates a highly ordered jet magnetic field. The results also require a
non-axisymmetric structure of the emission zone, implying a curved trajectory
for the emitting material within the jet, with the dissipation region located
at a considerable distance from the black hole, at about 10^5 gravitational
radii.Comment: Published in Nature issued on 18 February 2010. Corresponding
authors: Masaaki Hayashida and Greg Madejsk
Ion beam generated surface ripples: new insight in the underlying mechanism
A new hydrodynamic mechanism is proposed for the ion beam induced surface
patterning on solid surfaces. Unlike the standard mechanisms based on the ion
beam impact generated erosion and mass redistribution at the free surface
(proposed by Bradley-Harper (BH) and its extended theories), the new mechanism
proposes that the ion beam induced saltation and creep processes, coupled with
incompressible solid flow in amorphous layer, leads to the formation of ripple
patterns at the amorphous/crystalline (a/c) interface and hence at the free
surface. Ion beam stimulated solid flow inside the amorphous layer controls the
wavelength, where as the amount of material transported and re-deposited at a/c
interface control the amplitude of ripples. The new approach is verified by
designed experiments and supported by the discrete simulation method.Comment: 12 pages, 6 figures. arXiv admin note: substantial text overlap with
arXiv:1206.082
- …
