1,581 research outputs found
Sensitivity of tile drainage flow and crop yield on measured and calibrated soil hydraulic properties
Process-based agricultural system models require detailed description of soil hydraulic properties that are usually not available. The objectives of this study were to evaluate the sensitivity of model simulation results to variability in measured soil hydraulic properties and to compare simulation results using measured and default soil parameters. To do so, we measured soil water retention curves and saturated soil hydraulic conductivity (Ksat) from intact soil cores taken from a long-term experimental field near Nashua, Iowa for the Kenyon–Clyde–Floyd–Readlyn soil association. The soil water retention curves could be well described using the pore size distribution index (λ). Measured λ values from undisturbed soil cores ranged from 0.04 to 0.12 and the measured Ksat values ranged from 1.8 to 14.5 cm/h. These hydraulic properties were then used to calibrate the Root Zone Water Quality Model (RZWQM) for simulating soil water content, water table, tile drain flow, and crop yield (corn and soybean) by optimizing the lateral Ksat(LKsat) and hydraulic gradient (HG) for subsurface lateral flow. The measured soil parameters provided better simulations of soil water storage, water table, and N loss in tile flow than using the default soil parameters based on soil texture classes in RZWQM. Sensitivity analyses were conducted for λ, Ksat, saturated soil water content (θs) or drainable porosity, LKsat, and HG using the Latin Hypercubic Sampling (LHS) and for LKsat and HG also using a single variable analysis. Results of sensitivity analyses showed that RZWQM-simulated yield and biomass were not sensitive to soil hydraulic properties. Simulated tile flow and N losses in tile flow were not sensitive to λ and Ksat either, but they were sensitive to LKsat and HG. Further sensitivity analyses using a single variable showed that LKsat in the tile layer was a more sensitive parameter compared to LKsat in other soil layers, and HG was the most sensitive parameter for tile flow under the experimental soil and weather conditions
Empirical analysis and prediction of nitrate loading and crop yield for corn–soybean rotations
Nitrate nitrogen losses through subsurface drainage and crop yield are determined by multiple climatic and management variables. The combined and interactive effects of these variables, however, are poorly understood. Our objective is to predict crop yield, nitrate concentration, drainage volume, and nitrate loss in subsurface drainage from a corn (Zea mays L.) and soybean (Glycine max (L.) Merr.) rotation as a function of rainfall amount, soybean yield for the year before the corn–soybean sequence being evaluated, N source, N rate, and timing of N application in northeastern Iowa, U.S.A. Ten years of data (1994–2003) from a long-term study near Nashua, Iowa were used to develop multivariate polynomial regression equations describing these variables. The regression equations described over 87, 85, 94, 76, and 95% of variation in soybean yield, corn yield, subsurface drainage, nitrate concentration, and nitrate loss in subsurface drainage, respectively. A two-year rotation under average soil, average climatic conditions, and 125 kg N/ha application was predicted to loose 29, 37, 36, and 30 kg N/ha in subsurface drainage for early-spring swine manure, fall-applied swine manure, early-spring UAN fertilizer, and late-spring split UAN fertilizer (urea ammonium nitrate), respectively. Predicted corn yields were 10.0 and 9.7 Mg/ha for the swine manure and UAN sources applied at 125 kg N/ha. Timing of application (i.e., fall or spring) did not significantly affect corn yield. These results confirm other research suggesting that manure application can result in less nitrate leaching than UAN (e.g., 29 vs. 36 kg N/ha), and that spring application reduces nitrate leaching compared to fall application (e.g., 29 vs. 37 kg N/ha). The regression equations improve our understanding of nitrate leaching; offer a simple method to quantify potential N losses from Midwestern corn–soybean rotations under the climate, soil, and management conditions of the Nashua field experiment; and are a step toward development of easy to use N management tools
Single production of the top partners at high energy colliders
The left-right twin () model is a concrete realization of the
twin mechanism, which predicts the existence of the top partner . In
this paper, we consider production of associated with the top quark at
the high energy linear collider () and the experiments,
and its single production in future linac-ring type collider experiment.
To compare our results with those of the littlest model with
-parity, we also estimate production of the -even top partner via
the corresponding processes in these high energy collider experiments. A simply
phenomenological analysis is also given.Comment: 21 pages, 10 figures; to be published in Nucl. Phys.
Evaluating and predicting agricultural management effects under tile drainage using modified APSIM
An accurate and management sensitive simulation model for tile-drained Midwestern soils is needed to optimize the use of agricultural management practices (e.g., winter cover crops) to reduce nitrate leaching without adversely affecting corn yield. Our objectives were to enhance the Agricultural Production Systems Simulator (APSIM) for tile drainage, test the modified model for several management scenarios, and then predict nitrate leaching with and without winter wheat cover crop. Twelve years of data (1990–2001) from northeast Iowa were used for model testing. Management scenarios included continuous corn and corn–soybean rotations with single or split N applications. For 38 of 44 observations, yearly drain flow was simulated within 50 mm of observed for low drainage (\u3c 100 mm) or within 30% of observed for high drain flow. Corn yield was simulated within 1500 kg/ha for 12 of 24 observations. For 30 of 45 observations yearly nitrate-N loss in tile drains was simulated within 10 kg N/ha for low nitrate-N loss (\u3c 20 kg N/ha) or within 30% of observed for high nitrate-N loss. Several of the poor yield and nitrate-N loss predictions appear related to poor N-uptake simulations. The model accurately predicted greater corn yield under split application (140–190 kg N/ha) compared to single 110 kg N/ha application and higher drainage and nitrate-N loss under continuous corn compared to corn/soybean rotations. A winter wheat cover crop was predicted to reduce nitrate-N loss 38% (341 vs. 537 kg N/ha with and without cover) under 41-years of corn-soybean rotations and 150 kg N/ha applied to corn. These results suggest that the modified APSIM model is a promising tool to help estimate the relative effect of alternative management practices under fluctuating high water tables
Flavor Mediation Delivers Natural SUSY
If supersymmetry (SUSY) solves the hierarchy problem, then naturalness
considerations coupled with recent LHC bounds require non-trivial superpartner
flavor structures. Such "Natural SUSY" models exhibit a large mass hierarchy
between scalars of the third and first two generations as well as degeneracy
(or alignment) among the first two generations. In this work, we show how this
specific beyond the standard model (SM) flavor structure can be tied directly
to SM flavor via "Flavor Mediation". The SM contains an anomaly-free SU(3)
flavor symmetry, broken only by Yukawa couplings. By gauging this flavor
symmetry in addition to SM gauge symmetries, we can mediate SUSY breaking via
(Higgsed) gauge mediation. This automatically delivers a natural SUSY spectrum.
Third-generation scalar masses are suppressed due to the dominant breaking of
the flavor gauge symmetry in the top direction. More subtly, the
first-two-generation scalars remain highly degenerate due to a custodial U(2)
symmetry, where the SU(2) factor arises because SU(3) is rank two. This
custodial symmetry is broken only at order (m_c/m_t)^2. SUSY gauge coupling
unification predictions are preserved, since no new charged matter is
introduced, the SM gauge structure is unaltered, and the flavor symmetry treats
all matter multiplets equally. Moreover, the uniqueness of the anomaly-free
SU(3) flavor group makes possible a number of concrete predictions for the
superpartner spectrum.Comment: 17 pages, 7 figures, 2 tables. v2 references added, minor changes to
flavor constraints and a little discussion adde
Flavor of quiver-like realizations of effective supersymmetry
We present a class of supersymmetric models which address the flavor puzzle
and have an inverted hierarchy of sfermions. Their construction involves
quiver-like models with link fields in generic representations. The magnitude
of Standard-Model parameters is obtained naturally and a relatively heavy Higgs
boson is allowed without fine tuning. Collider signatures of such models are
possibly within the reach of LHC in the near future.Comment: LaTeX, 17 pages, 3 figures. V2: reference adde
Direct and Indirect Detection of Dark Matter in D6 Flavor Symmetric Model
We study a fermionic dark matter in a non-supersymmetric extension of the
standard model with a family symmetry based on D6xZ2xZ2. In our model, the
final state of the dark matter annihilation is determined to be e+ e- by the
flavor symmetry, which is consistent with the PAMELA result. At first, we show
that our dark matter mass should be within the range of 230 GeV - 750 GeV in
the WMAP analysis combined with mu to e gamma constraint. Moreover we
simultaneously explain the experiments of direct and indirect detection, by
simply adding a gauge and D6 singlet real scalar field. In the direct detection
experiments, we show that the lighter dark matter mass ~ 230 GeV and the
lighter standard model Higgs boson ~ 115 GeV is in favor of the observed bounds
reported by CDMS II and XENON100. In the indirect detection experiments, we
explain the positron excess reported by PAMELA through the Breit-Wigner
enhancement mechanism. We also show that our model is consistent with no
antiproton excess suggested by PAMELA.Comment: 20 pages, 9 figures, 2 tables, accepted version for publication in
European Physical Journal
A preliminary study of genetic factors that influence susceptibility to bovine tuberculosis in the British cattle herd
Associations between specific host genes and susceptibility to Mycobacterial infections such as tuberculosis have been reported in several species. Bovine tuberculosis (bTB) impacts greatly the UK cattle industry, yet genetic predispositions have yet to be identified. We therefore used a candidate gene approach to study 384 cattle of which 160 had reacted positively to an antigenic skin test (‘reactors’). Our approach was unusual in that it used microsatellite markers, embraced high breed diversity and focused particularly on detecting genes showing heterozygote advantage, a mode of action often overlooked in SNP-based studies. A panel of neutral markers was used to control for population substructure and using a general linear model-based approach we were also able to control for age. We found that substructure was surprisingly weak and identified two genomic regions that were strongly associated with reactor status, identified by markers INRA111 and BMS2753. In general the strength of association detected tended to vary depending on whether age was included in the model. At INRA111 a single genotype appears strongly protective with an overall odds ratio of 2.2, the effect being consistent across nine diverse breeds. Our results suggest that breeding strategies could be devised that would appreciably increase genetic resistance of cattle to bTB (strictly, reduce the frequency of incidence of reactors) with implications for the current debate concerning badger-culling
UV friendly T-parity in the SU(6)/Sp(6) little Higgs model
Electroweak precision tests put stringent constraints on the parameter space
of little Higgs models. Tree-level exchange of TeV scale particles in a generic
little Higgs model produce higher dimensional operators that make contributions
to electroweak observables that are typically too large. To avoid this problem
a discrete symmetry dubbed T-parity can be introduced to forbid the dangerous
couplings. However, it was realized that in simple group models such as the
littlest Higgs model, the implementation of T-parity in a UV completion could
present some challenges. The situation is analogous to the one in QCD where the
pion can easily be defined as being odd under a new symmetry in the
chiral Lagrangian, but this is not a symmetry of the quark Lagrangian. In
this paper we examine the possibility of implementing a T-parity in the low
energy model that might be easier to realize in the UV. In our
model, the T-parity acts on the low energy non-linear sigma model field in way
which is different to what was originally proposed for the Littlest Higgs, and
lead to a different low energy theory. In particular, the Higgs sector of this
model is a inert two Higgs doublets model with an approximate custodial
symmetry. We examine the contributions of the various sectors of the model to
electroweak precision data, and to the dark matter abundance.Comment: 21 pages,4 figures. Clarifications added, typos corrected and
references added. Published in JHE
Phenomenological Aspects of Gauge Mediation with Sequestered Supersymmetry Breaking in light of Dark Matter Detection
In a recent work, a model of gauge mediation with sequestered supersymmetry
(SUSY) breaking was proposed. In this model, the mass of the gravitino is
O(100) GeV without causing the flavor-changing neutral-current problem. In
contrast to traditional gauge mediation, the gravitino is not the lightest SUSY
particle and the neutralino is the candidate of the dark matter. In this paper,
we investigate phenomenological aspects of this model and discuss the
possibility of the direct detection of the dark matter. In particular, we focus
on the light neutralino case and find that the light-Higgsino scenario such as
the focus point is interesting, taking account of the recent CDMS result.Comment: 17 pages, 8 figures; v2:references added, some corrections;
v3:version accepted for publication in JHE
- …
