1,432 research outputs found

    Experimental quantum teleportation over a high-loss free-space channel

    Full text link
    We present a high-fidelity quantum teleportation experiment over a high-loss free-space channel between two laboratories. We teleported six states of three mutually unbiased bases and obtained an average state fidelity of 0.82(1), well beyond the classical limit of 2/3. With the obtained data, we tomographically reconstructed the process matrices of quantum teleportation. The free-space channel attenuation of 31 dB corresponds to the estimated attenuation regime for a down-link from a low-earth-orbit satellite to a ground station. We also discussed various important technical issues for future experiments, including the dark counts of single-photon detectors, coincidence-window width etc. Our experiment tested the limit of performing quantum teleportation with state-of-the-art resources. It is an important step towards future satellite-based quantum teleportation and paves the way for establishing a worldwide quantum communication network

    Age Gradients in the Stellar Populations of Massive Star Forming Regions Based on a New Stellar Chronometer

    Get PDF
    Accepted for publication in ApJ; 89 pages, 23 figures, 2 Tables; High quality version is at http://astro.psu.edu/mystixAuthor's accepted version of article published at http://dx.doi.org/10.1088/0004-637X/787/2/108A major impediment to understanding star formation in massive star forming regions (MSFRs) is the absence of a reliable stellar chronometer to unravel their complex star formation histories. We present a new estimation of stellar ages using a new method that employs near-infrared (NIR) and X-ray photometry, AgeJX. Stellar masses are derived from X-ray luminosities using the Lx - Mass relation from the Taurus cloud. J-band luminosities are compared to mass-dependent pre-main-sequence evolutionary models to estimate ages. AgeJX is sensitive to a wide range of evolutionary stages, from disk-bearing stars embedded in a cloud to widely dispersed older pre-main sequence stars. The MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) project characterizes 20 OB-dominated MSFRs using X-ray, mid-infrared, and NIR catalogs. The AgeJX method has been applied to 5525 out of 31,784 MYStIX Probable Complex Members. We provide a homogeneous set of median ages for over a hundred subclusters in 15 MSFRs; median subcluster ages range between 0.5 Myr and 5 Myr. The important science result is the discovery of age gradients across MYStIX regions. The wide MSFR age distribution appears as spatially segregated structures with different ages. The AgeJX ages are youngest in obscured locations in molecular clouds, intermediate in revealed stellar clusters, and oldest in distributed populations. The NIR color index J-H, a surrogate measure of extinction, can serve as an approximate age predictor for young embedded clusters

    Identifying young stars in massive star-forming regions for the MYStIX project

    Get PDF
    The Massive Young star-forming Complex Study in Infrared and X-rays (MYStIX) project requires samples of young stars that are likely members of 20 nearby Galactic massive star-forming regions. Membership is inferred from statistical classification of X-ray sources, from detection of a robust infrared excess that is best explained by circumstellar dust in a disk or infalling envelope and from published spectral types that are unlikely to be found among field stars. We present the MYStIX membership lists here, and describe in detail the statistical classification of X-ray sources via a "Naive Bayes Classifier." These membership lists provide the empirical foundation for later MYStIX science studies. © 2013. The American Astronomical Society. All rights reserved.We appreciate the significant time our anonymous referee devoted to this long paper and the useful suggestions offered. The MYStIX project is supported at Penn State by NASA grant NNX09AC74G, NSF grant AST-0908038, and the Chandra ACIS Team contract SV4-74018 (G. Garmire & L. Townsley, Principal Investigators), issued by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. M. S. Povich was supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-0901646. We thank Steve Majewski and Remy Indebetouw for access to results from the Spitzer Vela-Carina survey. This research made use of data products from the Chandra Data Archive and the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory (California Institute of Technology) under a contract with NASA. This research used data products from the United Kingdom Infrared Telescope (UKIRT), which is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the U.K.; some UKIRT data were obtained as part of the UKIRT Infrared Deep Sky Survey (Lawrence et al. 2007) and some were obtained via UKIRT director's discretionary time. This research used data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. The HAWK-I near-infrared observations were collected with the High Acuity Wide-field K-band Imager instrument on the ESO 8 m Very Large Telescope at Paranal Observatory, Chile, under ESO programme 60.A-9284(K). This research has also made use of NASA's Astrophysics Data System Bibliographic Services, the SIMBAD database operated at the Centre de Données Astronomique de Strasbourg, and SAOImage DS9 software developed by Smithsonian Astrophysical Observatory

    The MYStIX infrared-excess source catalog

    Get PDF
    The Massive Young Star-Forming Complex Study in Infrared and X-rays (MYStIX) project provides a comparative study of 20 Galactic massive star-forming complexes (d = 0.4-3.6 kpc). Probable stellar members in each target complex are identified using X-ray and/or infrared data via two pathways: (1) X-ray detections of young/massive stars with coronal activity/strong winds or (2) infrared excess (IRE) selection of young stellar objects (YSOs) with circumstellar disks and/or protostellar envelopes. We present the methodology for the second pathway using Spitzer/IRAC, 2MASS, and UKIRT imaging and photometry. Although IRE selection of YSOs is well-trodden territory, MYStIX presents unique challenges. The target complexes range from relatively nearby clouds in uncrowded fields located toward the outer Galaxy (e.g., NGC 2264, the Flame Nebula) to more distant, massive complexes situated along complicated, inner Galaxy sightlines (e.g., NGC 6357, M17). We combine IR spectral energy distribution (SED) fitting with IR color cuts and spatial clustering analysis to identify IRE sources and isolate probable YSO members in each MYStIX target field from the myriad types of contaminating sources that can resemble YSOs: extragalactic sources, evolved stars, nebular knots, and even unassociated foreground/background YSOs. Applying our methodology consistently across 18 of the target complexes, we produce the MYStIX IRE Source (MIRES) Catalog comprising 20,719 sources, including 8686 probable stellar members of the MYStIX target complexes. We also classify the SEDs of 9365 IR counterparts to MYStIX X-ray sources to assist the first pathway, the identification of X-ray-detected stellar members. The MIRES Catalog provides a foundation for follow-up studies of diverse phenomena related to massive star cluster formation, including protostellar outflows, circumstellar disks, and sequential star formation triggered by massive star feedback processes. © 2013. The American Astronomical Society. All rights reserved.M.S.P. was supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-0901646 during the main analysis phase of this project. The MIRES Catalog is based on observations from the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory (California Institute of Technology) under contract with NASA. This publication makes use of data products from the Two Micron All-Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and the NSF. This work is based in part on data obtained as part of the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey and in part by data obtained in UKIRT Director's Discretionary Time. UKIRT is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the U.K. The MYStIX project is supported at Penn State by NASA grant NNX09AC74G, NSF grant AST-0908038, and the Chandra ACIS Team contract SV4-74018 (PIs: G. Garmire and L. Townsley), issued by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060

    Quantum teleportation using active feed-forward between two Canary Islands

    Full text link
    Quantum teleportation [1] is a quintessential prerequisite of many quantum information processing protocols [2-4]. By using quantum teleportation, one can circumvent the no-cloning theorem [5] and faithfully transfer unknown quantum states to a party whose location is even unknown over arbitrary distances. Ever since the first experimental demonstrations of quantum teleportation of independent qubits [6] and of squeezed states [7], researchers have progressively extended the communication distance in teleportation, usually without active feed-forward of the classical Bell-state measurement result which is an essential ingredient in future applications such as communication between quantum computers. Here we report the first long-distance quantum teleportation experiment with active feed-forward in real time. The experiment employed two optical links, quantum and classical, over 143 km free space between the two Canary Islands of La Palma and Tenerife. To achieve this, the experiment had to employ novel techniques such as a frequency-uncorrelated polarization-entangled photon pair source, ultra-low-noise single-photon detectors, and entanglement-assisted clock synchronization. The average teleported state fidelity was well beyond the classical limit of 2/3. Furthermore, we confirmed the quality of the quantum teleportation procedure (without feed-forward) by complete quantum process tomography. Our experiment confirms the maturity and applicability of the involved technologies in real-world scenarios, and is a milestone towards future satellite-based quantum teleportation

    Response of bone turnover markers to raloxifene treatment in postmenopausal women with osteopenia.

    Get PDF
    Introduction: The change in bone turnover markers (BTM) in response to osteoporosis therapy can be assessed by a decrease beyond the least significant change (LSC) or below the mean of the reference interval (RI). We compared the performance of these two approaches in women treated with raloxifene. Methods: Fifty postmenopausal osteopenic women, (age 51-72y) were randomised to raloxifene or no treatment for 2 years. Blood samples were collected for the measurement of BTM. The LSC for each marker was calculated from the untreated women and the RI obtained from healthy premenopausal women (age 35-40y). Bone mineral density (BMD) was measured at the spine and hip. Results: There was a decrease in BTM in response to raloxifene treatment; percentage change at 12 weeks, CTX -39% (95% CI -48 to -28) and PINP -32% (95% CI -40 to -23) P<0.001. The proportion of women classified as responding to treatment using LSC at 12 weeks was: CTX 38%, PINP 52%, at 48 weeks CTX 60%, PINP 65%. For the RI approach; at 12 weeks CTX and PINP 38%, at 48 weeks CTX 40%, PINP 45%. There was a significant difference in the change in spine BMD in the raloxifene treated group compared to the no-treatment group at week 48; difference 0.031 g/cm2, (95% CI 0.016 to 0.046, P<0.001). Conclusions: The two approaches identified women that reached the target for treatment using BTM. Both LSC and RI criteria appear useful in identifying treatment response but the two approaches do not fully overlap and may be complementary

    Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems

    Full text link
    Quantum simulators are controllable quantum systems that can reproduce the dynamics of the system of interest, which are unfeasible for classical computers. Recent developments in quantum technology enable the precise control of individual quantum particles as required for studying complex quantum systems. Particularly, quantum simulators capable of simulating frustrated Heisenberg spin systems provide platforms for understanding exotic matter such as high-temperature superconductors. Here we report the analog quantum simulation of the ground-state wavefunction to probe arbitrary Heisenberg-type interactions among four spin-1/2 particles . Depending on the interaction strength, frustration within the system emerges such that the ground state evolves from a localized to a resonating valence-bond state. This spin-1/2 tetramer is created using the polarization states of four photons. The single-particle addressability and tunable measurement-induced interactions provide us insights into entanglement dynamics among individual particles. We directly extract ground-state energies and pair-wise quantum correlations to observe the monogamy of entanglement

    Overview of the Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) project

    Get PDF
    The Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) seeks to characterize 20 OB-dominated young clusters and their environs at distances d ≤ 4 kpc using imaging detectors on the Chandra X-ray Observatory, Spitzer Space Telescope, and the United Kingdom InfraRed Telescope. The observational goals are to construct catalogs of star-forming complex stellar members with well-defined criteria and maps of nebular gas (particularly of hot X-ray-emitting plasma) and dust. A catalog of MYStIX Probable Complex Members with several hundred OB stars and 31,784 low-mass pre-main sequence stars is assembled. This sample and related data products will be used to seek new empirical constraints on theoretical models of cluster formation and dynamics, mass segregation, OB star formation, star formation triggering on the periphery of H II regions, and the survivability of protoplanetary disks in H II regions. This paper gives an introduction and overview of the project, covering the data analysis methodology and application to two star-forming regions: NGC 2264 and the Trifid Nebula. © 2013. The American Astronomical Society. All rights reserved.We thank J. Forbrich and P. Teixeira (Univ. Vienna) for useful discussion about NGC 2264. The MYStIX project is supported at Penn State by NASA grant NNX09AC74G, NSF grant AST-0908038, and theChandra ACIS Team contract SV4- 74018 (PIs: G. Garmire & L. Townsley), issued by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. M. S. Povich was supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-0901646. This research made use of data products from the Chandra Data Archive and the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory (California Institute of Technology) under a contract with NASA. The United Kingdom Infrared Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the U.K. This work is based in part on data obtained as part of the UKIRT Infrared Deep Sky Survey and in part on data obtained in UKIRT Director’s Discretionary Time. This research used data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. The HAWK-I near-infrared observations were collected with the High Acuity Wide-field K-band Imager instrument on the ESO 8 m Very Large Telescope at Paranal Observatory, Chile, under ESO programme 60.A-9284(K). This research has also made use of NASA’s Astrophysics Data System Bibliographic Services, the SIMBAD database operated at the Centre de Donnees ´ Astronomique de Strasbourg, and SAOImage DS9 software developed by Smithsonian Astrophysical Observatory

    Fluctuations, dissipation and the dynamical Casimir effect

    Full text link
    Vacuum fluctuations provide a fundamental source of dissipation for systems coupled to quantum fields by radiation pressure. In the dynamical Casimir effect, accelerating neutral bodies in free space give rise to the emission of real photons while experiencing a damping force which plays the role of a radiation reaction force. Analog models where non-stationary conditions for the electromagnetic field simulate the presence of moving plates are currently under experimental investigation. A dissipative force might also appear in the case of uniform relative motion between two bodies, thus leading to a new kind of friction mechanism without mechanical contact. In this paper, we review recent advances on the dynamical Casimir and non-contact friction effects, highlighting their common physical origin.Comment: 39 pages, 4 figures. Review paper to appear in Lecture Notes in Physics, Volume on Casimir Physics, edited by Diego Dalvit, Peter Milonni, David Roberts, and Felipe da Rosa. Minor changes, a reference adde

    Combined aerobic and resistance exercise training decreases peripheral but not central artery wall thickness in subjects with type 2 diabetes

    Get PDF
    Objective Little is known about the impact of exercise training on conduit artery wall thickness in type 2 diabetes. We examined the local and systemic impact of exercise training on superficial femoral (SFA), brachial (BA), and carotid artery (CA) wall thickness in type 2 diabetes patients and controls. Methods Twenty patients with type 2 diabetes and 10 age- and sex-matched controls performed an 8-week training study involving lower limb-based combined aerobic and resistance exercise training. We examined the SFA to study the local effect of exercise, and also the systemic impact of lower limb-based exercise training on peripheral (i.e. BA) and central (i.e. CA) arteries. Wall thickness (WT), diameter and wall:lumen(W:L)-ratios were examined using automated edge detection of ultrasound images. Results Exercise training did not alter SFA or CA diameter in type 2 diabetes or controls (all P > 0.05). BA diameter was increased after training in type 2 diabetes, but not in controls. Exercise training decreased WT and W:L ratio in the SFA and BA, but not in CA in type 2 diabetes. Training did not alter WT or W:L ratio in controls (P > 0.05). Conclusion Lower limb-dominant exercise training causes remodelling of peripheral arteries, supplying active and inactive vascular beds, but not central arteries in type 2 diabetes
    corecore