84 research outputs found

    Predation pressure by arthropods, birds, and rodents is interactively shaped by tree species richness, vegetation structure, and season

    Get PDF
    Tree species richness, forest structure, and seasonal fluctuations between rainy and dry seasons can strongly affect trophic interactions in forest ecosystems, but the inter- and scale dependence of these variables remains unclear. Using artificial caterpillars (~18,000 replicates), we analyzed predation pressure by arthropods, birds, and rodents along a tree species richness gradient across seasons in a subtropical tree diversity experiment (BEF-China). The aim of the study was to test if forest structure, in addition to tree species richness, has an effect on predation pressure and to further specify which structural variables are important in driving predation. We assessed the effects of tree species richness and forest structure at the plot and local neighborhood levels. We also included fine-scale placement covariates, plot size, and topographical covariates of the study site. Forest structure and tree species richness independently and interactively affected predation pressure. The spatial scale was an important determinant for tree species richness and structural effects, extending from within plot scales to the overall heterogeneity of the plots’ surrounding environment. For example, the effect of branch density in the local neighborhood depended on both surrounding tree species richness and plot-level vegetation density. Similarly, visibility-enhancing factors increased attacks by arthropods (lack of branches in close surroundings) and by birds (open area), depending on the surrounding vegetation. A comparison of structural measures showed that predation pressure can be addressed in much greater detail with multiple specific structural features than with overall forest complexity. Seasonal change also affected predation pressure, with foliage being a stronger attractant in spring, but also by presumable topography-driven study plot differences in sun exposure and humidity between rainy and dry seasons. Our study demonstrates that predation pressure is not simply a function of tree species richness or structure but is shaped by the interplay of structural elements, spatial scale, and seasonal dynamics along gradients of tree species richness and forest structure. The structural and seasonal effects are important to take into account when addressing how current and future biodiversity loss may change top‐down control of herbivory and overall ecosystem functioning

    Tree diversity iIncreases forest temperature buffering via enhancing canopy density and structural diversity

    Get PDF
    Global warming is increasing the frequency and intensity of climate extremes. Forests may buffer climate extremes by creating their own attenuated microclimate below their canopy, which maintains forest functioning and biodiversity. However, the effect of tree diversity on temperature buffering in forests is largely unexplored. Here, we show that tree species richness increases forest temperature buffering across temporal scales over six years in a large-scale tree diversity experiment covering a species richness gradient of 1 to 24 tree species. We found that species richness strengthened the cooling of hot and the insulation against cold daily and monthly air temperatures and temperature extremes. This buffering effect of tree species richness was mediated by enhanced canopy density and structural diversity in species-rich stands. Safeguarding and planting diverse forests may thus mitigate negative effects of global warming and climate extremes on below-canopy ecosystem functions and communities

    c-Rel Controls Multiple Discrete Steps in the Thymic Development of Foxp3+ CD4 Regulatory T Cells

    Get PDF
    The development of natural Foxp3+ CD4 regulatory T cells (nTregs) proceeds via two steps that involve the initial antigen dependent generation of CD25+GITRhiFoxp3−CD4+ nTreg precursors followed by the cytokine induction of Foxp3. Using mutant mouse models that lack c-Rel, the critical NF-κB transcription factor required for nTreg differentiation, we establish that c-Rel regulates both of these developmental steps. c-Rel controls the generation of nTreg precursors via a haplo-insufficient mechanism, indicating that this step is highly sensitive to c-Rel levels. However, maintenance of c-Rel in an inactive state in nTreg precursors demonstrates that it is not required for a constitutive function in these cells. While the subsequent IL-2 induction of Foxp3 in nTreg precursors requires c-Rel, this developmental transition does not coincide with the nuclear expression of c-Rel. Collectively, our results support a model of nTreg differentiation in which c-Rel generates a permissive state for foxp3 transcription during the development of nTreg precursors that influences the subsequent IL-2 dependent induction of Foxp3 without a need for c-Rel reactivation

    Predation pressure by arthropods, birds, and rodents is interactively shaped by tree species richness, vegetation structure, and season

    Get PDF
    Tree species richness, forest structure, and seasonal fluctuations between rainy and dry seasons can strongly affect trophic interactions in forest ecosystems, but the inter- and scale dependence of these variables remains unclear. Using artificial caterpillars (~18,000 replicates), we analyzed predation pressure by arthropods, birds, and rodents along a tree species richness gradient across seasons in a subtropical tree diversity experiment (BEF-China). The aim of the study was to test if forest structure, in addition to tree species richness, has an effect on predation pressure and to further specify which structural variables are important in driving predation. We assessed the effects of tree species richness and forest structure at the plot and local neighborhood levels. We also included fine-scale placement covariates, plot size, and topographical covariates of the study site. Forest structure and tree species richness independently and interactively affected predation pressure. The spatial scale was an important determinant for tree species richness and structural effects, extending from within plot scales to the overall heterogeneity of the plots’ surrounding environment. For example, the effect of branch density in the local neighborhood depended on both surrounding tree species richness and plot-level vegetation density. Similarly, visibility-enhancing factors increased attacks by arthropods (lack of branches in close surroundings) and by birds (open area), depending on the surrounding vegetation. A comparison of structural measures showed that predation pressure can be addressed in much greater detail with multiple specific structural features than with overall forest complexity. Seasonal change also affected predation pressure, with foliage being a stronger attractant in spring, but also by presumable topography-driven study plot differences in sun exposure and humidity between rainy and dry seasons. Our study demonstrates that predation pressure is not simply a function of tree species richness or structure but is shaped by the interplay of structural elements, spatial scale, and seasonal dynamics along gradients of tree species richness and forest structure. The structural and seasonal effects are important to take into account when addressing how current and future biodiversity loss may change top‐down control of herbivory and overall ecosystem functioning
    corecore