49 research outputs found
Does vancomycin prescribing intervention affect vancomycin-resistant enterococcus infection and colonization in hospitals? A systematic review
BACKGROUND: Vancomycin resistant enterococcus (VRE) is a major cause of nosocomial infections in the United States and may be associated with greater morbidity, mortality, and healthcare costs than vancomycin-susceptible enterococcus. Current guidelines for the control of VRE include prudent use of vancomycin. While vancomycin exposure appears to be a risk factor for VRE acquisition in individual patients, the effect of vancomycin usage at the population level is not known. We conducted a systematic review to determine the impact of reducing vancomycin use through prescribing interventions on the prevalence and incidence of VRE colonization and infection in hospitals within the United States. METHODS: To identify relevant studies, we searched three electronic databases, and hand searched selected journals. Thirteen studies from 12 articles met our inclusion criteria. Data were extracted and summarized for study setting, design, patient characteristics, types of intervention(s), and outcome measures. The relative risk, 95% confidence interval, and p-value associated with change in VRE acquisition pre- and post-vancomycin prescription interventions were calculated and compared. Heterogeneity in study results was formally explored by stratified analysis. RESULTS: No randomized clinical trials on this topic were found. Each of the 13 included studies used a quasi-experimental design of low hierarchy. Seven of the 13 studies reported statistically significant reductions in VRE acquisition following interventions, three studies reported no significant change, and three studies reported increases in VRE acquisition, one of which reported statistical significance. Results ranged from a reduction of 82.5% to an increase of 475%. Studies of specific wards, which included sicker patients, were more likely to report positive results than studies of an entire hospital including general inpatients (Fisher's exact test 0.029). The type of intervention, endemicity status, type of study design, and the duration of intervention were not found to significantly modify the results. Among the six studies that implemented vancomycin reduction strategies as the sole intervention, two of six (33%) found a significant reduction in VRE colonization and/or infection. In contrast, among studies implementing additional VRE control measures, five of seven (71%) reported a significant reduction. CONCLUSION: It was not possible to conclusively determine a potential role for vancomycin usage reductions in controlling VRE colonization and infection in hospitals in the United States. The effectiveness of such interventions and their sustainability remains poorly defined because of the heterogeneity and quality of studies. Future research using high-quality study designs and implementing vancomycin as the sole intervention are needed to answer this question
Impact of digestive and oropharyngeal decontamination on the intestinal microbiota in ICU patients
Selective digestive microbial decontamination (SDD) is hypothesized to benefit patients in intensive care (ICU) by suppressing Gram-negative potential pathogens from the colon without affecting the anaerobic intestinal microbiota. The purpose of this study was to provide more insight to the effects of digestive tract and oropharyngeal decontamination on the intestinal microbiota by means of a prospective clinical trial in which faecal samples were collected from ICU patients for intestinal microbiota analysis. The faecal samples were collected from ICU patients enrolled in a multicentre trial to study the outcome of SDD and selective oral decontamination (SOD) in comparison with standard care (SC). Fluorescent in situ hybridization (FISH) was used to analyze the faecal microbiota. The numbers of bacteria from different bacterial groups were compared between the three regimens. The total counts of bacteria per gram faeces did not differ between regimens. The F. prausnitzii group of bacteria, representing an important group among intestinal microbiota, was significantly reduced in the SDD regimen compared to the SC and SOD. The Enterobacteriaceae were significantly suppressed during SDD compared to both SOD and SC; enterococci increased in SDD compared to both other regimens. The composition of the intestinal microbiota is importantly affected by SDD. The F. prausnitzii group was significantly suppressed during SDD. This group of microbiota is a predominant producer of butyrate, the main energy source for colonocytes. Reduction of this microbiota is an important trade-off while reducing gram-negative bacteria by SDD
Probiotic Sonicates Selectively Induce Mucosal Immune Cells Apoptosis through Ceramide Generation via Neutral Sphingomyelinase
This is an open-access article distributed under the terms of the Creative Commons Attribution License.-- et al.[Background]: Probiotics appear to be beneficial in inflammatory bowel disease, but their mechanism of action is incompletely understood. We investigated whether probiotic-derived sphingomyelinase mediates this beneficial effect.
[Methodology/Principal Findings]: Neutral sphingomyelinase (NSMase) activity was measured in sonicates of the probiotic L. brevis (LB) and S. thermophilus (ST) and the non-probiotic E. coli (EC) and E. faecalis (EF). Lamina propria mononuclear cells (LPMC) were obtained from patients with Crohn's disease (CD) and Ulcerative Colitis (UC), and peripheral blood mononuclear cells (PBMC) from healthy volunteers, analysing LPMC and PBMC apoptosis susceptibility, reactive oxygen species (ROS) generation and JNK activation. In some experiments, sonicates were preincubated with GSH or GW4869, a specific NSMase inhibitor. NSMase activity of LB and ST was 10-fold that of EC and EF sonicates. LB and ST sonicates induced significantly more apoptosis of CD and UC than control LPMC, whereas EC and EF sonicates failed to induce apoptosis. Pre-stimulation with anti-CD3/CD28 induced a significant and time-dependent increase in LB-induced apoptosis of LPMC and PBMC. Exposure to LB sonicates resulted in JNK activation and ROS production by LPMC. NSMase activity of LB sonicates was completely abrogated by GW4869, causing a dose-dependent reduction of LB-induced apoptosis. LB and ST selectively induced immune cell apoptosis, an effect dependent on the degree of cell activation and mediated by bacterial NSMase.
[Conclusions]: These results suggest that induction of immune cell apoptosis is a mechanism of action of some probiotics, and that NSMase-mediated ceramide generation contributes to the therapeutic effects of probiotics.The funding sources included grants from Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Ministerio de Ciencia e Innovación (SAF2005-00280 and SAF2008-03676 to MS, FIS2009-00056 to AM, SAF2009-11417 to JCF), Fundación Ramón Areces (to MS), the National Institutes of Health (DK30399 and DK50984 to CF) and the Research Center for Liver and Pancreatic Diseases funded by the United States National Institute for Alcohol Abuse and Alcoholism (P50 AA 11999 to JCF).Peer reviewe
Genomic Organization and Expression Demonstrate Spatial and Temporal Hox Gene Colinearity in the Lophotrochozoan Capitella sp. I
Hox genes define regional identities along the anterior–posterior axis in many animals. In a number of species, Hox genes are clustered in the genome, and the relative order of genes corresponds with position of expression in the body. Previous Hox gene studies in lophotrochozoans have reported expression for only a subset of the Hox gene complement and/or lack detailed genomic organization information, limiting interpretations of spatial and temporal colinearity in this diverse animal clade. We studied expression and genomic organization of the single Hox gene complement in the segmented polychaete annelid Capitella sp. I. Total genome searches identified 11 Hox genes in Capitella, representing 11 distinct paralog groups thought to represent the ancestral lophotrochozoan complement. At least 8 of the 11 Capitella Hox genes are genomically linked in a single cluster, have the same transcriptional orientation, and lack interspersed non-Hox genes. Studying their expression by situ hybridization, we find that the 11 Capitella Hox genes generally exhibit spatial and temporal colinearity. With the exception of CapI-Post1, Capitella Hox genes are all expressed in broad ectodermal domains during larval development, consistent with providing positional information along the anterior–posterior axis. The anterior genes CapI-lab, CapI-pb, and CapI-Hox3 initiate expression prior to the appearance of segments, while more posterior genes appear at or soon after segments appear. Many of the Capitella Hox genes have either an anterior or posterior expression boundary coinciding with the thoracic–abdomen transition, a major body tagma boundary. Following metamorphosis, several expression patterns change, including appearance of distinct posterior boundaries and restriction to the central nervous system. Capitella Hox genes have maintained a clustered organization, are expressed in the canonical anterior–posterior order found in other metazoans, and exhibit spatial and temporal colinearity, reflecting Hox gene characteristics that likely existed in the protostome–deuterostome ancestor
