576 research outputs found

    Deterministic generation of an on-demand Fock state

    Full text link
    We theoretically study the deterministic generation of photon Fock states on-demand using a protocol based on a Jaynes Cummings quantum random walk which includes damping. We then show how each of the steps of this protocol can be implemented in a low temperature solid-state quantum system with a Nitrogen-Vacancy centre in a nano-diamond coupled to a nearby high-Q optical cavity. By controlling the coupling duration between the NV and the cavity via the application of a time dependent Stark shift, and by increasing the decay rate of the NV via stimulated emission depletion (STED) a Fock state with high photon number can be generated on-demand. Our setup can be integrated on a chip and can be accurately controlled.Comment: 13 pages, 9 figure

    Demonstration of entanglement-by-measurement of solid state qubits

    Full text link
    Projective measurements are a powerful tool for manipulating quantum states. In particular, a set of qubits can be entangled by measurement of a joint property such as qubit parity. These joint measurements do not require a direct interaction between qubits and therefore provide a unique resource for quantum information processing with well-isolated qubits. Numerous schemes for entanglement-by-measurement of solid-state qubits have been proposed, but the demanding experimental requirements have so far hindered implementations. Here we realize a two-qubit parity measurement on nuclear spins in diamond by exploiting the electron spin of a nitrogen-vacancy center as readout ancilla. The measurement enables us to project the initially uncorrelated nuclear spins into maximally entangled states. By combining this entanglement with high-fidelity single-shot readout we demonstrate the first violation of Bells inequality with solid-state spins. These results open the door to a new class of experiments in which projective measurements are used to create, protect and manipulate entanglement between solid-state qubits.Comment: 6 pages, 4 figure

    Thermal shape fluctuation effects in the description of hot nuclei

    Full text link
    The behavior of several nuclear properties with temperature is analyzed within the framework of the Finite Temperature Hartree-Fock-Bogoliubov (FTHFB) theory with the Gogny force and large configuration spaces. Thermal shape fluctuations in the quadrupole degree of freedom, around the mean field solution, are taken into account with the Landau prescription. As representative examples the nuclei 164^{164}Er, 152^{152}Dy and 192^{192}Hg are studied. Numerical results for the superfluid to normal and deformed to spherical shape transitions are presented. We found a substantial effect of the fluctuations on the average value of several observables. In particular, we get a decrease in the critical temperature (TcT_c) for the shape transition as compared with the plain FTHFB prediction as well as a washing out of the shape transition signatures. The new values of TcT_c are closer to the ones found in Strutinsky calculations and with the Pairing Plus Quadrupole model Hamiltonian.Comment: 17 pages, 8 Figure

    Ultrafast optical control of entanglement between two quantum dot spins

    Full text link
    The interaction between two quantum bits enables entanglement, the two-particle correlations that are at the heart of quantum information science. In semiconductor quantum dots much work has focused on demonstrating single spin qubit control using optical techniques. However, optical control of entanglement of two spin qubits remains a major challenge for scaling from a single qubit to a full-fledged quantum information platform. Here, we combine advances in vertically-stacked quantum dots with ultrafast laser techniques to achieve optical control of the entangled state of two electron spins. Each electron is in a separate InAs quantum dot, and the spins interact through tunneling, where the tunneling rate determines how rapidly entangling operations can be performed. The two-qubit gate speeds achieved here are over an order of magnitude faster than in other systems. These results demonstrate the viability and advantages of optically controlled quantum dot spins for multi-qubit systems.Comment: 24 pages, 5 figure

    Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km

    Get PDF
    For more than 80 years, the counterintuitive predictions of quantum theory have stimulated debate about the nature of reality. In his seminal work, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory. Bell showed that in any local realist theory the correlations between distant measurements satisfy an inequality and, moreover, that this inequality can be violated according to quantum theory. This provided a recipe for experimental tests of the fundamental principles underlying the laws of nature. In the past decades, numerous ingenious Bell inequality tests have been reported. However, because of experimental limitations, all experiments to date required additional assumptions to obtain a contradiction with local realism, resulting in loopholes. Here we report on a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell's inequality. We employ an event-ready scheme that enables the generation of high-fidelity entanglement between distant electron spins. Efficient spin readout avoids the fair sampling assumption (detection loophole), while the use of fast random basis selection and readout combined with a spatial separation of 1.3 km ensure the required locality conditions. We perform 245 trials testing the CHSH-Bell inequality S2S \leq 2 and find S=2.42±0.20S = 2.42 \pm 0.20. A null hypothesis test yields a probability of p=0.039p = 0.039 that a local-realist model for space-like separated sites produces data with a violation at least as large as observed, even when allowing for memory in the devices. This result rules out large classes of local realist theories, and paves the way for implementing device-independent quantum-secure communication and randomness certification.Comment: Raw data will be made available after publicatio

    Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking.

    Get PDF
    The ventral pallidum is centrally positioned within mesocorticolimbic reward circuits, and its dense projection to the ventral tegmental area (VTA) regulates neuronal activity there. However, the ventral pallidum is a heterogeneous structure, and how this complexity affects its role within wider reward circuits is unclear. We found that projections to VTA from the rostral ventral pallidum (RVP), but not the caudal ventral pallidum (CVP), were robustly Fos activated during cue-induced reinstatement of cocaine seeking--a rat model of relapse in addiction. Moreover, designer receptor-mediated transient inactivation of RVP neurons, their terminals in VTA or functional connectivity between RVP and VTA dopamine neurons blocked the ability of drug-associated cues (but not a cocaine prime) to reinstate cocaine seeking. In contrast, CVP neuronal inhibition blocked cocaine-primed, but not cue-induced, reinstatement. This double dissociation in ventral pallidum subregional roles in drug seeking is likely to be important for understanding the mesocorticolimbic circuits underlying reward seeking and addiction

    The Transcriptional Repressor TupA in Aspergillus niger Is Involved in Controlling Gene Expression Related to Cell Wall Biosynthesis, Development, and Nitrogen Source Availability.

    Get PDF
    The Tup1-Cyc8 (Ssn6) complex is a well characterized and conserved general transcriptional repressor complex in eukaryotic cells. Here, we report the identification of the Tup1 (TupA) homolog in the filamentous fungus Aspergillus niger in a genetic screen for mutants with a constitutive expression of the agsA gene. The agsA gene encodes a putative alpha-glucan synthase, which is induced in response to cell wall stress in A. niger. Apart from the constitutive expression of agsA, the selected mutant was also found to produce an unknown pigment at high temperatures. Complementation analysis with a genomic library showed that the tupA gene could complement the phenotypes of the mutant. Screening of a collection of 240 mutants with constitutive expression of agsA identified sixteen additional pigment-secreting mutants, which were all mutated in the tupA gene. The phenotypes of the tupA mutants were very similar to the phenotypes of a tupA deletion strain. Further analysis of the tupA-17 mutant and the DeltatupA mutant revealed that TupA is also required for normal growth and morphogenesis. The production of the pigment at 37 degrees C is nitrogen source-dependent and repressed by ammonium. Genome-wide expression analysis of the tupA mutant during exponential growth revealed derepression of a large group of diverse genes, including genes related to development and cell wall biosynthesis, and also protease-encoding genes that are normally repressed by ammonium. Comparison of the transcriptome of up-regulated genes in the tupA mutant showed limited overlap with the transcriptome of caspofungin-induced cell wall stress-related genes, suggesting that TupA is not a general suppressor of cell wall stress-induced genes. We propose that TupA is an important repressor of genes related to development and nitrogen metabolism
    corecore