35,294 research outputs found
Friction Variability in Planar Pushing Data: Anisotropic Friction and Data-collection Bias
Friction plays a key role in manipulating objects. Most of what we do with
our hands, and most of what robots do with their grippers, is based on the
ability to control frictional forces. This paper aims to better understand the
variability and predictability of planar friction. In particular, we focus on
the analysis of a recent dataset on planar pushing by Yu et al. [1] devised to
create a data-driven footprint of planar friction.
We show in this paper how we can explain a significant fraction of the
observed unconventional phenomena, e.g., stochasticity and multi-modality, by
combining the effects of material non-homogeneity, anisotropy of friction and
biases due to data collection dynamics, hinting that the variability is
explainable but inevitable in practice.
We introduce an anisotropic friction model and conduct simulation experiments
comparing with more standard isotropic friction models. The anisotropic
friction between object and supporting surface results in convergence of
initial condition during the automated data collection. Numerical results
confirm that the anisotropic friction model explains the bias in the dataset
and the apparent stochasticity in the outcome of a push. The fact that the data
collection process itself can originate biases in the collected datasets,
resulting in deterioration of trained models, calls attention to the data
collection dynamics.Comment: 8 pages, 13 figure
The diverse evolutionary paths of simulated high-z massive, compact galaxies to z=0
Massive quiescent galaxies have much smaller physical sizes at high redshift
than today. The strong evolution of galaxy size may be caused by progenitor
bias, major and minor mergers, adiabatic expansion, and/or renewed star
formation, but it is difficult to test these theories observationally. Herein,
we select a sample of 35 massive, compact galaxies (
M, M/kpc) at in the
cosmological hydrodynamical simulation Illustris and trace them forward to
to uncover their evolution and identify their descendants. By , the
original factor of 3 difference in stellar mass spreads to a factor of 20. The
dark matter halo masses similarly spread from a factor of 5 to 40. The
galaxies' evolutionary paths are diverse: about half acquire an ex-situ
envelope and are the core of a more massive descendant, a third survive
undisturbed and gain very little mass, 15% are consumed in a merger with a more
massive galaxy, and a small remainder are thoroughly mixed by major mergers.
The galaxies grow in size as well as mass, and only 10% remain compact by
. The majority of the size growth is driven by the acquisition of ex-situ
mass. The most massive galaxies at are the most likely to have compact
progenitors, but this trend possesses significant dispersion which precludes a
direct linkage to compact galaxies at . The compact galaxies' merger rates
are influenced by their environments, so that isolated or satellite
compact galaxies (which are protected from mergers) are the most likely to
survive to the present day.Comment: 19 pages, 10 figures, MNRAS accepted version including 2 new figure
Evidence and modeling of turbulence bifurcation in L-mode confinement transitions on Alcator C-Mod
© 2020 Author(s). Analysis and modeling of rotation reversal hysteresis experiments show that a single turbulent bifurcation is responsible for the Linear to Saturated Ohmic Confinement (LOC/SOC) transition and concomitant intrinsic rotation reversal on Alcator C-Mod. Plasmas on either side of the reversal exhibit different toroidal rotation profiles and therefore different turbulence characteristics despite the profiles of density and temperature, which are indistinguishable within measurement uncertainty. Elements of this bifurcation are also shown to persist for auxiliary heated L-modes. The deactivation of subdominant (in the linear growth rate and contribution to heat transport) ion temperature gradient and trapped electron mode instabilities is identified as the only possible change in turbulence within a reduced quasilinear transport model across the reversal, which is consistent with the measured profiles and inferred heat and particle fluxes. Experimental constraints on a possible change from strong to weak turbulence, outside the description of the quasilinear model, are also discussed. These results indicate an explanation for the LOC/SOC transition that provides a mechanism for the hysteresis through the dynamics of subdominant modes and changes in their relative populations and does not involve a change in the most linearly unstable ion-scale drift-wave instability
Recommended from our members
CD32-RNA Co-localizes with HIV-RNA in CD3+ Cells Found within Gut Tissues from Viremic and ART-Suppressed Individuals.
BackgroundIdentifying biomarkers for cells harboring replication-competent HIV is a major research priority. Recently, there have been mixed reports addressing the possibility that CD32-expressing T cells are enriched for HIV. There is growing evidence that CD32 expression increases with cellular activation that may be related to, but not necessarily specific for, infection with HIV. However, the relationship of CD32 expression to HIV-infection in subtypes of tissue-resident leukocytes is unclear.MethodsFirst, we used duplex chromogenic in situ hybridization to identify cells actively transcribing RNA for both CD32 and HIV on human gut tissues. Then we performed multiplexed immunofluorescence and in situ hybridization (mIFISH) on sections from the same tissues to determine the phenotype of individual cells co-expressing HIV-RNA and CD32-RNA.ResultsHIV-RNA+ cells were more abundant in tissues from viremic individuals than in those receiving suppressive anti-retroviral therapy (ART). However, staining by both methods indicated that a higher proportion of HIV-RNA+ cells co-expressed CD32-RNA in ART-suppressed individuals than in those with viremia. The majority of HIV-RNA+ cells were CD3+.ConclusionsOur data suggest that the transcription of CD32-RNA is correlated with HIV transcriptional activity in CD3+ cells found within human gut tissue. Whether or not up-regulation of CD32-RNA is a direct result of HIV transcription or more global T-cell activation remains unclear
An analysis of the evolving comoving number density of galaxies in hydrodynamical simulations
The cumulative comoving number-density of galaxies as a function of stellar
mass or central velocity dispersion is commonly used to link galaxy populations
across different epochs. By assuming that galaxies preserve their
number-density in time, one can infer the evolution of their properties, such
as masses, sizes, and morphologies. However, this assumption does not hold in
the presence of galaxy mergers or when rank ordering is broken owing to
variable stellar growth rates. We present an analysis of the evolving comoving
number density of galaxy populations found in the Illustris cosmological
hydrodynamical simulation focused on the redshift range . Our
primary results are as follows: 1) The inferred average stellar mass evolution
obtained via a constant comoving number density assumption is systematically
biased compared to the merger tree results at the factor of 2(4) level
when tracking galaxies from redshift out to redshift ; 2) The
median number density evolution for galaxy populations tracked forward in time
is shallower than for galaxy populations tracked backward in time; 3) A similar
evolution in the median number density of tracked galaxy populations is found
regardless of whether number density is assigned via stellar mass, stellar
velocity dispersion, or dark matter halo mass; 4) Explicit tracking reveals a
large diversity in galaxies' assembly histories that cannot be captured by
constant number-density analyses; 5) The significant scatter in galaxy linking
methods is only marginally reduced by considering a number of additional
physical and observable galaxy properties as realized in our simulation. We
provide fits for the forward and backward median evolution in stellar mass and
number density and discuss implications of our analysis for interpreting
multi-epoch galaxy property observations.Comment: 18 pages, 11 figures, submitted to MNRAS, comments welcom
- …
