35,294 research outputs found

    Friction Variability in Planar Pushing Data: Anisotropic Friction and Data-collection Bias

    Full text link
    Friction plays a key role in manipulating objects. Most of what we do with our hands, and most of what robots do with their grippers, is based on the ability to control frictional forces. This paper aims to better understand the variability and predictability of planar friction. In particular, we focus on the analysis of a recent dataset on planar pushing by Yu et al. [1] devised to create a data-driven footprint of planar friction. We show in this paper how we can explain a significant fraction of the observed unconventional phenomena, e.g., stochasticity and multi-modality, by combining the effects of material non-homogeneity, anisotropy of friction and biases due to data collection dynamics, hinting that the variability is explainable but inevitable in practice. We introduce an anisotropic friction model and conduct simulation experiments comparing with more standard isotropic friction models. The anisotropic friction between object and supporting surface results in convergence of initial condition during the automated data collection. Numerical results confirm that the anisotropic friction model explains the bias in the dataset and the apparent stochasticity in the outcome of a push. The fact that the data collection process itself can originate biases in the collected datasets, resulting in deterioration of trained models, calls attention to the data collection dynamics.Comment: 8 pages, 13 figure

    The diverse evolutionary paths of simulated high-z massive, compact galaxies to z=0

    Get PDF
    Massive quiescent galaxies have much smaller physical sizes at high redshift than today. The strong evolution of galaxy size may be caused by progenitor bias, major and minor mergers, adiabatic expansion, and/or renewed star formation, but it is difficult to test these theories observationally. Herein, we select a sample of 35 massive, compact galaxies (M=13×1011M_* = 1-3 \times 10^{11} M_\odot, M/R1.5>1010.5M_*/R^{1.5} > 10^{10.5} M_\odot/kpc1.5^{1.5}) at z=2z=2 in the cosmological hydrodynamical simulation Illustris and trace them forward to z=0z=0 to uncover their evolution and identify their descendants. By z=0z=0, the original factor of 3 difference in stellar mass spreads to a factor of 20. The dark matter halo masses similarly spread from a factor of 5 to 40. The galaxies' evolutionary paths are diverse: about half acquire an ex-situ envelope and are the core of a more massive descendant, a third survive undisturbed and gain very little mass, 15% are consumed in a merger with a more massive galaxy, and a small remainder are thoroughly mixed by major mergers. The galaxies grow in size as well as mass, and only \sim10% remain compact by z=0z=0. The majority of the size growth is driven by the acquisition of ex-situ mass. The most massive galaxies at z=0z=0 are the most likely to have compact progenitors, but this trend possesses significant dispersion which precludes a direct linkage to compact galaxies at z=2z=2. The compact galaxies' merger rates are influenced by their z=2z=2 environments, so that isolated or satellite compact galaxies (which are protected from mergers) are the most likely to survive to the present day.Comment: 19 pages, 10 figures, MNRAS accepted version including 2 new figure

    Evidence and modeling of turbulence bifurcation in L-mode confinement transitions on Alcator C-Mod

    Get PDF
    © 2020 Author(s). Analysis and modeling of rotation reversal hysteresis experiments show that a single turbulent bifurcation is responsible for the Linear to Saturated Ohmic Confinement (LOC/SOC) transition and concomitant intrinsic rotation reversal on Alcator C-Mod. Plasmas on either side of the reversal exhibit different toroidal rotation profiles and therefore different turbulence characteristics despite the profiles of density and temperature, which are indistinguishable within measurement uncertainty. Elements of this bifurcation are also shown to persist for auxiliary heated L-modes. The deactivation of subdominant (in the linear growth rate and contribution to heat transport) ion temperature gradient and trapped electron mode instabilities is identified as the only possible change in turbulence within a reduced quasilinear transport model across the reversal, which is consistent with the measured profiles and inferred heat and particle fluxes. Experimental constraints on a possible change from strong to weak turbulence, outside the description of the quasilinear model, are also discussed. These results indicate an explanation for the LOC/SOC transition that provides a mechanism for the hysteresis through the dynamics of subdominant modes and changes in their relative populations and does not involve a change in the most linearly unstable ion-scale drift-wave instability

    An analysis of the evolving comoving number density of galaxies in hydrodynamical simulations

    Get PDF
    The cumulative comoving number-density of galaxies as a function of stellar mass or central velocity dispersion is commonly used to link galaxy populations across different epochs. By assuming that galaxies preserve their number-density in time, one can infer the evolution of their properties, such as masses, sizes, and morphologies. However, this assumption does not hold in the presence of galaxy mergers or when rank ordering is broken owing to variable stellar growth rates. We present an analysis of the evolving comoving number density of galaxy populations found in the Illustris cosmological hydrodynamical simulation focused on the redshift range 0z30\leq z \leq 3. Our primary results are as follows: 1) The inferred average stellar mass evolution obtained via a constant comoving number density assumption is systematically biased compared to the merger tree results at the factor of \sim2(4) level when tracking galaxies from redshift z=0z=0 out to redshift z=2(3)z=2(3); 2) The median number density evolution for galaxy populations tracked forward in time is shallower than for galaxy populations tracked backward in time; 3) A similar evolution in the median number density of tracked galaxy populations is found regardless of whether number density is assigned via stellar mass, stellar velocity dispersion, or dark matter halo mass; 4) Explicit tracking reveals a large diversity in galaxies' assembly histories that cannot be captured by constant number-density analyses; 5) The significant scatter in galaxy linking methods is only marginally reduced by considering a number of additional physical and observable galaxy properties as realized in our simulation. We provide fits for the forward and backward median evolution in stellar mass and number density and discuss implications of our analysis for interpreting multi-epoch galaxy property observations.Comment: 18 pages, 11 figures, submitted to MNRAS, comments welcom
    corecore