227 research outputs found

    Organic compound-mineral interactions: using flash pyrolysis to monitor the adsorption of fatty acids on calcite

    Get PDF
    Fatty acids are near ubiquitous organic compounds in living organisms in the Earth’s biosphere. Following death of an organism in the marine environment its fatty acids may survive descent to the sea bed where they can be juxtaposed with minerals. The aim of this study was to investigate the interaction of fatty acids with the common marine mineral calcite. Adsorption of tetradecanoic acid (C14) on calcite results in a sigmoidal or “s” isotherm. Flash pyrolysis experiments were conducted on samples of fatty acid adsorbed onto calcite and were compared with similar experiments on pure fatty acid and on salts of a fatty acid. Flash pyrolysis of pure tetradecanoic acid generated unsaturated and saturated hydrocarbons and a series of unsaturated and saturated low molecular weight fatty acids. Flash pyrolysis of free tetradecanoic acid salt produced saturated and unsaturated hydrocarbons, an aldehyde and a homologous series of saturated and unsaturated ketones, one of which was a symmetrical mid chain ketone (14-heptacosanone). Flash pyrolysis data from adsorbed tetradecanoic acid samples suggested that adsorption is analogous to the formation of the calcium salt of tetradecanoic acid. A key characteristic of the flash pyrolysis products of adsorbed fatty acids and fatty acid salts was the production of ketones with higher molecular weights than the starting fatty acids. Ketonisation was not observed from the flash pyrolysis of pure acid which implied the catalytic significance of the calcite mineral surface. The abundance of hydrocarbons relative to ketones in the pyrolysates negatively correlated with the proportion of fatty acids adsorbed to the surface of calcite. The ability to use flash pyrolysis to diagnose the nature of fatty acid interactions with mineral surfaces provides a valuable tool for monitoring the fate of these important lipids at the Earth’s surface as they pass into the geosphere and are subjected to diagenetic processes

    The search for Hesperian organic matter on Mars: Pyrolysis studies of sediments rich in sulfur and iron

    Get PDF
    Jarosite on Mars is of significant geological and astrobiological interest as it forms in acidic aqueous conditions that are potentially habitable for acidophilic organisms. Jarosite can provide environmental context and may host organic matter. The most common analytical technique used to search for organic molecules on the surface of Mars is pyrolysis. However, thermal decomposition of jarosite produces oxygen, which degrades organic signals. At pH values greater than 3 and high water to rock ratios jarosite has a close association with goethite. Hematite can form by dehydration of goethite or directly from jarosite under certain aqueous conditions. Goethite and hematite are significantly more amenable for pyrolysis experiments searching for organic matter than jarosite. Analysis of the mineralogy and organic chemistry of samples from a natural acidic stream revealed a diverse response for organic compounds during pyrolysis of goethite-rich layers but a poor response for jarosite-rich or mixed jarosite-goethite units. Goethite units that are associated with jarosite but do not contain jarosite themselves should be targeted for organic detection pyrolysis experiments on Mars. These findings are extremely timely as future exploration targets for Mars Science Laboratory include Hematite Ridge, which may have formed from goethite precursors

    Quantifying preservation potential: lipid degradation in a Mars-analog circumneutral iron deposit

    Get PDF
    Comparisons between the preservation potential of Mars-analog environments have historically been qualitative rather than quantitative. Recently, however, laboratory-based artificial maturation combined with kinetic modeling techniques have emerged as a potential means by which the preservation potential of solvent-soluble organic matter can be quantified in various Mars-analog environments. These methods consider how elevated temperatures, pressures, and organic–inorganic interactions influence the degradation of organic biomarkers post-burial. We used these techniques to investigate the preservation potential of deposits from a circumneutral iron-rich groundwater system. These deposits are composed of ferrihydrite (Fe5HO8 · 4H2O), an amorphous iron hydroxide mineral that is a common constituent of rocks found in ancient lacustrine environments on Mars, such as those observed in Gale Crater. Both natural and synthetic ferrihydrite samples were subjected to hydrous pyrolysis to observe the effects of long-term burial on the mineralogy and organic content of the samples. Our experiments revealed that organic–inorganic interactions in the samples are dominated by the transformation of iron minerals. As amorphous ferrihydrite transforms into more crystalline species, the decrease in surface area results in the desorption of organic matter, potentially rendering them more susceptible to degradation. We also find that circumneutral iron-rich deposits provide unfavorable conditions for the preservation of solvent-soluble organic matter. Quantitative comparisons between preservation potentials as calculated when using kinetic parameters show that circumneutral iron-rich deposits are ∼25 times less likely to preserve solvent-soluble organic matter compared with acidic, iron-rich environments. Our results suggest that circumneutral iron-rich deposits should be deprioritized in favor of acidic iron- and sulfur-rich deposits when searching for evidence of life with solvent extraction techniques

    Earliest Triassic microbialites in the South China Block and other areas; controls on their growth and distribution

    Get PDF
    Earliest Triassic microbialites (ETMs) and inorganic carbonate crystal fans formed after the end-Permian mass extinction (ca. 251.4 Ma) within the basal Triassic Hindeodus parvus conodont zone. ETMs are distinguished from rarer, and more regional, subsequent Triassic microbialites. Large differences in ETMs between northern and southern areas of the South China block suggest geographic provinces, and ETMs are most abundant throughout the equatorial Tethys Ocean with further geographic variation. ETMs occur in shallow-marine shelves in a superanoxic stratified ocean and form the only widespread Phanerozoic microbialites with structures similar to those of the Cambro-Ordovician, and briefly after the latest Ordovician, Late Silurian and Late Devonian extinctions. ETMs disappeared long before the mid-Triassic biotic recovery, but it is not clear why, if they are interpreted as disaster taxa. In general, ETM occurrence suggests that microbially mediated calcification occurred where upwelled carbonate-rich anoxic waters mixed with warm aerated surface waters, forming regional dysoxia, so that extreme carbonate supersaturation and dysoxic conditions were both required for their growth. Long-term oceanic and atmospheric changes may have contributed to a trigger for ETM formation. In equatorial western Pangea, the earliest microbialites are late Early Triassic, but it is possible that ETMs could exist in western Pangea, if well-preserved earliest Triassic facies are discovered in future work
    corecore