10 research outputs found

    DNA demethylation-dependent enhancement of toll-like receptor-2 gene expression in cystic fibrosis epithelial cells involves SP1-activated transcription

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The clinical course of cystic fibrosis (CF) is characterized by recurrent pulmonary infections and chronic inflammation. We have recently shown that decreased methylation of the toll-like receptor-2 (TLR2) promoter leads to an apparent CF-related up-regulation of TLR2. This up-regulation could be responsible, in part, for the CF-associated enhanced proinflammatory responses to various bacterial products in epithelial cells. However, the molecular mechanisms underlying DNA hypomethylation-dependent enhancement of TLR2 expression in CF cells remain unknown.</p> <p>Results</p> <p>The present study indicates that there is a specific CpG region (CpG#18-20), adjacent to the SP1 binding site that is significantly hypomethylated in several CF epithelial cell lines. These CpGs encompass a minimal promoter region required for basal TLR2 expression, and suggests that CpG#18-20 methylation regulates TLR2 expression in epithelial cells. Furthermore, reporter gene analysis indicated that the SP1 binding site is involved in the methylation-dependent regulation of the TLR2 promoter. Inhibition of SP1 with mithramycin A decreased TLR2 expression in both CF and 5-azacytidine-treated non-CF epithelial cells. Moreover, even though SP1 binding was not affected by CpG methylation, SP1-dependent transcription was abolished by CpG methylation.</p> <p>Conclusion</p> <p>This report implicates SP1 as a critical component of DNA demethylation-dependent up-regulation of TLR2 expression in CF epithelial cells.</p

    Tyne IV Collagen Variants in CKD: Performance of Computational Predictions for Identifying Pathogenic Variants

    No full text
    Rationale & Objective: Pathogenic variants in type IV collagen have been reported to account for a significant proportion of chronic kidney disease. Accordingly, genetic testing is increasingly used to diagnose kidney diseases, but testing also may reveal rare missense variants that are of uncertain clinical significance. To aid in interpretation, computational prediction (called in silico) programs may be used to predict whether a variant is clinically important. We evaluate the performance of in silico programs for COL4A3/A4/A5 variants. Study Design Setting & Participants: Rare missense variants in COL4A3/A4/A5 were identified in disease cohorts, including a local focal segmental glomerulosclerosis (FSGS) cohort and publicly available disease databases, in which they are categorized as pathogenic or benign based on clinical criteria. Tests Compared & Outcomes: All rare missense variants identified in the 4 disease cohorts were subjected to in silico predictions using 12 different programs. Comparisons between the predictions were compared with: (1) variant classification (pathogenic or benign) in the cohorts and (2) functional characterization in a randomly selected smaller number (17) of pathogenic or uncertain significance variants obtained from the local FSGS cohort. Results: In silico predictions correctly classified 75% to 97% of pathogenic and 57% to 100% of benign COL4A3/A4/A5 variants in public disease databases. The congruency of in silico predictions was similar for variants categorized as pathogenic and benign, with the exception of benign COL4A5 variants, in which disease effects were overestimated. By contrast, in silico predictions and functional characterization classified all 9 pathogenic COL4A3/A4/A5 variants correctly that were obtained from a local FSGS cohort. However, these programs also overestimated the effects of genomic variants of uncertain significance when compared with functional characterization. Each of the 12 in silico programs used yielded similar results. Limitations: Overestimation of in silico program sensitivity given that they may have been used in the categorization of variants labeled as pathogenic in disease repositories. Conclusions: Our results suggest that in silico predictions are sensitive but not specific to assign COL4A3/A4/A5 variant pathogenicity, with misclassification of benign variants and variants of uncertain significance. Thus, we do not recommend in silico programs but instead recommend pursuing more objective levels of evidence suggested by medical genetics guidelines

    Enhancement of HDL by Policosanol

    No full text
    corecore