175 research outputs found
Liposarcoma cells with aldefluor and CD133 activity have a cancer stem cell potential
Aldehyde dehydrogenase (ALDH) has recently been shown to be a marker of cancer stem-like cells (CSCs) across tumour types. The primary goals of this study were to investigate whether ALDH is expressed in liposarcomas, and whether CSCs can be identified in the ALDHhigh subpopulation. We have demonstrated that ALDH is indeed expressed in 10 out of 10 liposarcoma patient samples. Using a liposarcoma xenograft model, we have identified a small population of cells with an inducible stem cell potential, expressing both ALDH and CD133 following culturing in stem cell medium. This potential CSC population, which makes up for 0, 1-1, 7% of the cells, displayed increased self-renewing abilities and increased tumourigenicity, giving tumours in vivo from as few as 100 injected cells
PTHrP Induces Autocrine/Paracrine Proliferation of Bone Tumor Cells through Inhibition of Apoptosis
Giant Cell Tumor of Bone (GCT) is an aggressive skeletal tumor characterized by local bone destruction, high recurrence rates and metastatic potential. Previous work in our lab has shown that the neoplastic cell of GCT is a proliferating pre-osteoblastic stromal cell in which the transcription factor Runx2 plays a role in regulating protein expression. One of the proteins expressed by these cells is parathryroid hormone-related protein (PTHrP). The objectives of this study were to determine the role played by PTHrP in GCT of bone with a focus on cell proliferation and apoptosis. Primary stromal cell cultures from 5 patients with GCT of bone and one lung metastsis were used for cell-based experiments. Control cell lines included a renal cell carcinoma (RCC) cell line and a human fetal osteoblast cell line. Cells were exposed to optimized concentrations of a PTHrP neutralizing antibody and were analyzed with the use of cell proliferation and apoptosis assays including mitochondrial dehydrogenase assays, crystal violet assays, APO-1 ELISAs, caspase activity assays, flow cytometry and immunofluorescent immunohistochemistry. Neutralization of PTHrP in the cell environment inhibited cell proliferation in a consistent manner and induced apoptosis in the GCT stromal cells, with the exception of those obtained from a lung metastasis. Cell cycle progression was not significantly affected by PTHrP neutralization. These findings indicate that PTHrP plays an autocrine/paracrine neoplastic role in GCT by allowing the proliferating stromal cells to evade apoptosis, possibly through non-traditional caspase-independent pathways. Thus PTHrP neutralizing immunotherapy is an intriguing potential therapeutic strategy for this tumor
CD133 expression in chemo-resistant Ewing sarcoma cells
<p>Abstract</p> <p>Background</p> <p>Some human cancers demonstrate cellular hierarchies in which tumor-initiating cancer stem cells generate progeny cells with reduced tumorigenic potential. This cancer stem cell population is proposed to be a source of therapy-resistant and recurrent disease. Ewing sarcoma family tumors (ESFT) are highly aggressive cancers in which drug-resistant, relapsed disease remains a significant clinical problem. Recently, the cell surface protein CD133 was identified as a putative marker of tumor-initiating cells in ESFT. We evaluated ESFT tumors and cell lines to determine if high levels of CD133 are associated with drug resistance.</p> <p>Methods</p> <p>Expression of the CD133-encoding <it>PROM1 </it>gene was determined by RT-PCR in ESFT tumors and cell lines. CD133 protein expression was assessed by western blot, FACS and/or immunostaining. Cell lines were FACS-sorted into CD133+ and CD133- fractions and proliferation, colony formation in soft agar, and <it>in vivo </it>tumorigenicity compared. Chemosensitivity was measured using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assays.</p> <p>Results</p> <p><it>PROM1 </it>expression was either absent or extremely low in most tumors. However, <it>PROM1 </it>was highly over-expressed in 4 of 48 cases. Two of the 4 patients with <it>PROM1 </it>over-expressing tumors rapidly succumbed to primary drug-resistant disease and two are long-term, event-free survivors. The expression of <it>PROM1 </it>in ESFT cell lines was similarly heterogeneous. The frequency of CD133+ cells ranged from 2-99% and, with one exception, no differences in the chemoresistance or tumorigenicity of CD133+ and CD133- cell fractions were detected. Importantly, however, the STA-ET-8.2 cell line was found to retain a cellular hierarchy in which relatively chemo-resistant, tumorigenic CD133+ cells gave rise to relatively chemo-sensitive, less tumorigenic, CD133- progeny.</p> <p>Conclusions</p> <p>Up to 10% of ESFT express high levels of <it>PROM1</it>. In some tumors and cell lines the CD133+ fraction is relatively more drug-resistant, while in others there is no apparent difference between CD133+ and CD133- cells. These studies reveal heterogeneity in <it>PROM1</it>/CD133 expression in ESFT tumors and cell lines and confirm that high levels of <it>PROM1 </it>expression are, in at least some cases, associated with chemo-resistant disease. Further studies are required to elucidate the contribution of <it>PROM1/</it>CD133 expressing cells to therapeutic resistance in a large, prospective cohort of primary ESFT.</p
Regulated expression of matrix metalloproteinases, inflammatory mediators, and endometrial matrix remodeling by 17beta-estradiol in the immature rat uterus
<p>Abstract</p> <p>Background</p> <p>Administration of a single physiological dose of 17beta-estradiol (E2:40 microg/kg) to the ovariectomized immature rat rapidly induces uterine growth and remodeling. The response is characterized by changes in endometrial stromal architecture during an inflammatory-like response that likely involves activated matrix-metalloproteinases (MMPs). While estrogen is known as an inducer of endometrial growth, its role in specific expression of MMP family members in vivo is poorly characterized. E2-induced changes in MMP-2, -3, -7, and -9 mRNA and protein expression were analyzed to survey regulation along an extended time course 0-72 hours post-treatment. Because E2 effects inflammatory-like changes that may alter MMP expression, we assessed changes in tissue levels of TNF-alpha and MCP-1, and we utilized dexamethasone (600 microg/kg) to better understand the role of inflammation on matrix remodeling.</p> <p>Methods</p> <p>Ovariectomized 21 day-old female Sprague-Dawley rats were administered E2 and uterine tissues were extracted and prepared for transmission electron microscopy (TEM), mRNA extraction and real-time RT-PCR, protein extraction and Western blot, or gelatin zymography. In inhibitor studies, pretreatment compounds were administered prior to E2 and tissues were harvested at 4 hours post-hormone challenge.</p> <p>Results</p> <p>Using a novel TEM method to quantitatively assess changes in stromal collagen density, we show that E2-induced matrix remodeling is rapid in onset (< 1 hour) and leads to a 70% reduction in collagen density by 4 hours. Matrix remodeling is MMP-dependent, as pretreatment with batimastat ablates the hormone effect. MMP-3, -7, and -9 and inflammatory markers (TNF-alpha and MCP-1) are transiently upregulated with peak expression at 4 hours post-E2 treatment. MMP-2 expression is increased by E2 but highest expression and activity occur later in the response (48 hours). Dexamethasone inhibits E2-modulated changes in collagen density and expression of MMPs although these effects are variable. Dexamethasone upregulates MMP-3 mRNA but not protein levels, inhibiting E2-induced upregulation of MMP-7, and -9, and MCP-1 mRNA and protein but not inhibiting the hormone-induced increase in TNF-alpha mRNA.</p> <p>Conclusion</p> <p>The data demonstrate that E2-regulated endometrial remodeling is rapid in onset (<1 hour) and peak expression of MMPs and inflammatory mediators correlates temporally with the period of lowest stromal collagen density during uterine tissue hypertrophy.</p
DNA repair: the culprit for tumor-initiating cell survival?
The existence of “tumor-initiating cells” (TICs) has been a topic of heated debate for the last few years within the field of cancer biology. Their continuous characterization in a variety of solid tumors has led to an abundance of evidence supporting their existence. TICs are believed to be responsible for resistance against conventional treatment regimes of chemotherapy and radiation, ultimately leading to metastasis and patient demise. This review summarizes DNA repair mechanism(s) and their role in the maintenance and regulation of stem cells. There is evidence supporting the hypothesis that TICs, similar to embryonic stem (ES) cells and hematopoietic stem cells (HSCs), display an increase in their ability to survive genotoxic stress and injury. Mechanistically, the ability of ES cells, HSCs and TICs to survive under stressful conditions can be attributed to an increase in the efficiency at which these cells undergo DNA repair. Furthermore, the data presented in this review summarize the results found by our lab and others demonstrating that TICs have an increase in their genomic stability, which can allow for TIC survival under conditions such as anticancer treatments, while the bulk population of tumor cells dies. We believe that these data will greatly impact the development and design of future therapies being engineered to target and eradicate this highly aggressive cancer cell population
The role of the mitochondria and the endoplasmic reticulum contact sites in the development of the immune responses
Abstract Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are dynamic modules enriched in subset of lipids and specialized proteins that determine their structure and functions. The MERCs regulate lipid transfer, autophagosome formation, mitochondrial fission, Ca2+ homeostasis and apoptosis. Since these functions are essential for cell biology, it is therefore not surprising that MERCs also play a critical role in organ physiology among which the immune system stands by its critical host defense function. This defense system must discriminate and tolerate host cells and beneficial commensal microorganisms while eliminating pathogenic ones in order to preserve normal homeostasis. To meet this goal, the immune system has two lines of defense. First, the fast acting but unspecific innate immune system relies on anatomical physical barriers and subsets of hematopoietically derived cells expressing germline-encoded receptors called pattern recognition receptors (PRR) recognizing conserved motifs on the pathogens. Second, the slower but very specific adaptive immune response is added to complement innate immunity. Adaptive immunity relies on another set of specialized cells, the lymphocytes, harboring receptors requiring somatic recombination to be expressed. Both innate and adaptive immune cells must be activated to phagocytose and process pathogens, migrate, proliferate, release soluble factors and destroy infected cells. Some of these functions are strongly dependent on lipid transfer, autophagosome formation, mitochondrial fission, and Ca2+ flux; this indicates that MERCs could regulate immunity
Integration of VDR genome wide binding and GWAS genetic variation data reveals co-occurrence of VDR and NF-κB binding that is linked to immune phenotypes
Symptomatic cardiac metastases of breast cancer 27 years after mastectomy: a case report with literature review - pathophysiology of molecular mechanisms and metastatic pathways, clinical aspects, diagnostic procedures and treatment modalities.
Metastases to the heart and pericardium are rare but more common than primary cardiac tumours and are generally associated with a rather poor prognosis. Most cases are clinically silent and are undiagnosed in vivo until the autopsy. We present a female patient with a 27-year-old history of an operated primary breast cancer who was presented with dyspnoea, paroxysmal nocturnal dyspnoea and orthopnoea. The clinical signs and symptoms aroused suspicion of congestive heart failure. However, the cardiac metastases were detected during a routine cardiologic evaluation and confirmed with computed tomography imaging. Additionally, this paper outlines the pathophysiology of molecular and clinical mechanisms involved in the metastatic spreading, clinical presentation, diagnostic procedures and treatment of heart metastases. The present case demonstrates that a complete surgical resection and systemic chemotherapy may result in a favourable outcome for many years. However, a lifelong medical follow-up, with the purpose of a detection of metastases, is highly recommended. We strongly call the attention of clinicians to the fact that during the follow-up of all cancer patients, such heart failure may be a harbinger of the secondary heart involvement
Household Characteristics, Housing Profile and Diet Diversity of Pantawid Pamilyang Pilipino Program (4Ps) Beneficiaries and Non-beneficiaries in Lucena City, Quezon, Philippines
Background. The Philippines adopted the Conditional Cash Transfer (CCT) program as the Pantawid Pamilyang Pilipino Program (4Ps) that serves as the government’s flagship social assistance program for the poor. This provides short-term income support to poor families while investing on health and education to overcome future poverty.
Objective. This study aimed to characterize the beneficiary and non-beneficiary households and evaluate the impact of 4Ps program on housing facilities and diet diversity.
Methods. Quasi-experimental design was used to evaluate survey outcomes between 91 randomly sampled beneficiaries and 91 completely enumerated non-beneficiaries (incoming grantees). FANTA Household Dietary Diversity Score (HDDS) was used as an indicator for dietary diversity while structured questionnaire on housing profile was based on BIDANI and CEM-UPLB tools.
Results. The 4Ps beneficiaries had significantly higher maternal education, household size (ρ=0.038), and improved water source (ρ=0.004) than non-beneficiaries. Cash transfer among 4Ps households provided 11% increase in the average monthly income of P7,324 pre-transfer. Diet diversity using FANTA scoring (0-12) showed that nonbeneficiaries were significantly lower by 0.4 than 4Ps score of 7.9 (ρ=0.003). Maternal education was found to have significant positive correlation with diet diversity. Both groups had high cereals and fats intake (>90%) while low in complex carbohydrates and legumes (<31%).
Conclusion. The 4Ps had positive correlation on housing profile and diet diversity among beneficiaries. Family Development Session should integrate practical methods on improving variety of foods, specifically, the low consumption food groups. Additionally, a review on the selection criteria based on the provincial poverty threshold vis a vis income of grantees must be implemented to accurately target intended beneficiaries.</jats:p
- …
