4,533 research outputs found
S-wave charmed mesons in lattice NRQCD
Heavy-light mesons can be studied using the 1/M expansion of NRQCD, provided
the heavy quark mass is sufficiently large. Calculations of the S-wave charmed
meson masses from a classically and tadpole-improved action are presented. A
comparison of O(1/M), O(1/M^2) and O(1/M^3) results allows convergence of the
expansion to be discussed. It is shown that the form of discretized heavy quark
propagation must be chosen carefully.Comment: LATTICE98(heavyqk), 3 pages including 3 figure
Power spectrum for the small-scale Universe
The first objects to arise in a cold dark matter universe present a daunting
challenge for models of structure formation. In the ultra small-scale limit,
CDM structures form nearly simultaneously across a wide range of scales.
Hierarchical clustering no longer provides a guiding principle for theoretical
analyses and the computation time required to carry out credible simulations
becomes prohibitively high. To gain insight into this problem, we perform
high-resolution (N=720^3 - 1584^3) simulations of an Einstein-de Sitter
cosmology where the initial power spectrum is P(k) propto k^n, with -2.5 < n <
-1. Self-similar scaling is established for n=-1 and n=-2 more convincingly
than in previous, lower-resolution simulations and for the first time,
self-similar scaling is established for an n=-2.25 simulation. However, finite
box-size effects induce departures from self-similar scaling in our n=-2.5
simulation. We compare our results with the predictions for the power spectrum
from (one-loop) perturbation theory and demonstrate that the renormalization
group approach suggested by McDonald improves perturbation theory's ability to
predict the power spectrum in the quasilinear regime. In the nonlinear regime,
our power spectra differ significantly from the widely used fitting formulae of
Peacock & Dodds and Smith et al. and a new fitting formula is presented.
Implications of our results for the stable clustering hypothesis vs. halo model
debate are discussed. Our power spectra are inconsistent with predictions of
the stable clustering hypothesis in the high-k limit and lend credence to the
halo model. Nevertheless, the fitting formula advocated in this paper is purely
empirical and not derived from a specific formulation of the halo model.Comment: 30 pages including 10 figures; accepted for publication in MNRA
XRCC2 R188H (rs3218536), XRCC3 T241M (rs861539) and R243H (rs77381814) single nucleotide polymorphisms in cervical cancer risk
Human Papillomavirus (HPV) is the main cause of cervical cancer and its precursor lesions. Transformation may be induced by several mechanisms, including oncogene activation and genome instability. Individual differences in DNA damage recognition and repair have been hypothesized to influence cervical cancer risk. The aim of this study was to evaluate whether the double strand break gene polymorphisms XRCC2 R188H G>A (rs3218536), XRCC3 T241M C>T (rs861539) and R243H G>A (rs77381814) are associated to cervical cancer in Argentine women. A case control study consisting of 322 samples (205 cases and 117 controls) was carried out. HPV DNA detection was performed by PCR and genotyping of positive samples by EIA (enzyme immunoassay). XRCC2 and 3 polymorphisms were determined by pyrosequencing. The HPV-adjusted odds ratio (OR) of XRCC2 188 GG/AG genotypes was OR = 2.4 (CI = 1.1-4.9, p = 0.02) for cervical cancer. In contrast, there was no increased risk for cervical cancer with XRCC3 241 TT/CC genotypes (OR = 0.48; CI = 0.2-1; p = 0.1) or XRCC3 241 CT/CC (OR = 0.87; CI = 0.52-1.4; p = 0.6). Regarding XRCC3 R243H, the G allele was almost fixed in the population studied. In conclusion, although the sample size was modest, the present data indicate a statistical association between cervical cancer and XRCC2 R188H polymorphism. Future studies are needed to confirm these findings.Fil: Perez, Luis Orlando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Crivaro, Andrea Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Barbisan, Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Poleri, Lucía Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Golijow, Carlos Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; Argentin
The Halo Occupation Distribution of Active Galactic Nuclei
Using a fully cosmological hydrodynamic simulation that self-consistently
incorporates the growth and feedback of supermassive black holes and the
physics of galaxy formation, we examine the effects of environmental factors
(e.g., local gas density, black hole feedback) on the halo occupation
distribution of low luminosity active galactic nuclei (AGN). We decompose the
mean occupation function into central and satellite contribution and compute
the conditional luminosity functions (CLF). The CLF of the central AGN follows
a log-normal distribution with the mean increasing and scatter decreasing with
increasing redshifts. We analyze the light curves of individual AGN and show
that the peak luminosity of the AGN has a tighter correlation with halo mass
compared to instantaneous luminosity. We also compute the CLF of satellite AGN
at a given central AGN luminosity. We do not see any significant correlation
between the number of satellites with the luminosity of the central AGN at a
fixed halo mass. We also show that for a sample of AGN with luminosity above
10^42 ergs/s the mean occupation function can be modeled as a softened step
function for central AGN and a power law for the satellite population. The
radial distribution of AGN inside halos follows a power law at all redshifts
with a mean index of -2.33 +/- 0.08. Incorporating the environmental dependence
of supermassive black hole accretion and feedback, our formalism provides a
theoretical tool for interpreting current and future measurements of AGN
clustering.Comment: 14 pages, 11 figures, 2 Tables (Matches the MNRAS accepted version
The Effects of Gas on Morphological Transformation in Mergers: Implications for Bulge and Disk Demographics
Transformation of disks into spheroids via mergers is a well-accepted element
of galaxy formation models. However, recent simulations have shown that bulge
formation is suppressed in increasingly gas-rich mergers. We investigate the
global implications of these results in a cosmological framework, using
independent approaches: empirical halo-occupation models (where galaxies are
populated in halos according to observations) and semi-analytic models. In
both, ignoring the effects of gas in mergers leads to the over-production of
spheroids: low and intermediate-mass galaxies are predicted to be
bulge-dominated (B/T~0.5 at <10^10 M_sun), with almost no bulgeless systems),
even if they have avoided major mergers. Including the different physical
behavior of gas in mergers immediately leads to a dramatic change: bulge
formation is suppressed in low-mass galaxies, observed to be gas-rich (giving
B/T~0.1 at <10^10 M_sun, with a number of bulgeless galaxies in good agreement
with observations). Simulations and analytic models which neglect the
similarity-breaking behavior of gas have difficulty reproducing the strong
observed morphology-mass relation. However, the observed dependence of gas
fractions on mass, combined with suppression of bulge formation in gas-rich
mergers, naturally leads to the observed trends. Discrepancies between
observations and models that ignore the role of gas increase with redshift; in
models that treat gas properly, galaxies are predicted to be less
bulge-dominated at high redshifts, in agreement with the observations. We
discuss implications for the global bulge mass density and future observational
tests.Comment: 14 pages, 11 figures, accepted to MNRAS (matched published version).
A routine to return the galaxy merger rates discussed here is available at
http://www.cfa.harvard.edu/~phopkins/Site/mergercalc.htm
CORE Technology and Exact Hamiltonian Real-Space Renormalization Group Transformations
The COntractor REnormalization group (CORE) method, a new approach to solving
Hamiltonian lattice systems, is presented. The method defines a systematic and
nonperturbative means of implementing Kadanoff-Wilson real-space
renormalization group transformations using cluster expansion and contraction
techniques. We illustrate the approach and demonstrate its effectiveness using
scalar field theory, the Heisenberg antiferromagnetic chain, and the
anisotropic Ising chain. Future applications to the Hubbard and t-J models and
lattice gauge theory are discussed.Comment: 65 pages, 9 Postscript figures, uses epsf.st
Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons
The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions
The Adaptive TreePM: An Adaptive Resolution Code for Cosmological N-body Simulations
Cosmological N-Body simulations are used for a variety of applications.
Indeed progress in the study of large scale structures and galaxy formation
would have been very limited without this tool. For nearly twenty years the
limitations imposed by computing power forced simulators to ignore some of the
basic requirements for modeling gravitational instability. One of the
limitations of most cosmological codes has been the use of a force softening
length that is much smaller than the typical inter-particle separation. This
leads to departures from collisionless evolution that is desired in these
simulations. We propose a particle based method with an adaptive resolution
where the force softening length is reduced in high density regions while
ensuring that it remains well above the local inter-particle separation. The
method, called the Adaptive TreePM, is based on the TreePM code. We present the
mathematical model and an implementation of this code, and demonstrate that the
results converge over a range of options for parameters introduced in
generalizing the code from the TreePM code. We explicitly demonstrate
collisionless evolution in collapse of an oblique plane wave. We compare the
code with the fixed resolution TreePM code and also an implementation that
mimics adaptive mesh refinement methods and comment on the agreement, and
disagreements in the results. We find that in most respects the ATreePM code
performs at least as well as the fixed resolution TreePM in highly over-dense
regions, from clustering and number density of haloes, to internal dynamics of
haloes. We also show that the adaptive code is faster than the corresponding
high resolution TreePM code.Comment: 18 pages, 11 figures. Accepted for publication in the MNRA
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
- …
