2,286 research outputs found

    A Gaussian Theory of Superfluid--Bose-Glass Phase Transition

    Full text link
    We show that gaussian quantum fluctuations, even if infinitesimal, are sufficient to destroy the superfluidity of a disordered boson system in 1D and 2D. The critical disorder is thus finite no matter how small the repulsion is between particles. Within the gaussian approximation, we study the nature of the elementary excitations, including their density of states and mobility edge transition. We give the gaussian exponent η\eta at criticality in 1D and show that its ratio to η\eta of the pure system is universal.Comment: Revtex 3.0, 11 pages (4 figures will be sent through airmail upon request

    Disordered Boson Systems: A Perturbative Study

    Full text link
    A hard-core disordered boson system is mapped onto a quantum spin 1/2 XY-model with transverse random fields. It is then generalized to a system of spins with an arbitrary magnitude S and studied through a 1/S expansion. The first order 1/S expansion corresponds to a spin-wave theory. The effect of weak disorder is studied perturbatively within such a first order 1/S scheme. We compute the reduction of the speed of sound and the life time of the Bloch phonons in the regime of weak disorder. Generalizations of the present study to the strong disordered regime are discussed.Comment: 27 pages, revte

    Numerical analysis of the magnetic-field-tuned superconductor-insulator transition in two dimensions

    Full text link
    Ground state of the two-dimensional hard-core-boson model subjected to external magnetic field and quenched random chemical potential is studied numerically. In experiments, magnetic-field-tuned superconductor-insulator transition has already come under through investigation, whereas in computer simulation, only randomness-driven localization (with zero magnetic field) has been studied so far: The external magnetic field brings about a difficulty that the hopping amplitude becomes complex number (through the gauge twist), for which the quantum Monte-Carlo simulation fails. Here, we employ the exact diagonalization method, with which we demonstrate that the model does exhibit field-tuned localization transition at a certain critical magnetic field. At the critical point, we found that the DC conductivity is not universal, but is substantially larger than that of the randomness-driven localization transition at zero magnetic field. Our result supports recent experiment by Markovi'c et al. reporting an increase of the critical conductivity with magnetic field strengthened

    Single and two-particle energy gaps across the disorder-driven superconductor-insulator transition

    Full text link
    The competition between superconductivity and localization raises profound questions in condensed matter physics. In spite of decades of research, the mechanism of the superconductor-insulator transition (SIT) and the nature of the insulator are not understood. We use quantum Monte Carlo simulations that treat, on an equal footing, inhomogeneous amplitude variations and phase fluctuations, a major advance over previous theories. We gain new microscopic insights and make testable predictions for local spectroscopic probes. The energy gap in the density of states survives across the transition, but coherence peaks exist only in the superconductor. A characteristic pseudogap persists above the critical disorder and critical temperature, in contrast to conventional theories. Surprisingly, the insulator has a two-particle gap scale that vanishes at the SIT, despite a robust single-particle gap.Comment: 7 pages, 5 figures (plus supplement with 4 pages, 5 figures

    Superconductor-Insulator Transition in a Disordered Electronic System

    Full text link
    We study an electronic model of a 2D superconductor with onsite randomness using Quantum Monte Carlo simulations. The superfluid density is used to track the destruction of superconductivity in the ground state with increasing disorder. The non-superconducting state is identified as an insulator from the temperature dependence of its d.c. resistivity. The value of σdc\sigma_{\rm dc} at the superconductor-insulator transition appears to be non-universal.Comment: PostScript, 4 pages, figures include

    Thickness-Magnetic Field Phase Diagram at the Superconductor-Insulator Transition in 2D

    Full text link
    The superconductor-insulator transition in ultrathin films of amorphous Bi was tuned by changing the film thickness, with and without an applied magnetic field. The first experimentally obtained phase diagram is mapped as a function of thickness and magnetic field in the T=0 limit. A finite size scaling analysis has been carried out to determine the critical exponent product vz, which was found to be 1.2 for the zero field transition, and 1.4 for the finite field transition. Both results are different from the exponents found for the magnetic field tuned transition in the same system, 0.7.Comment: 4 pages, 4 figure

    Critical Exponents for Three-Dimensional Superfluid--Bose-Glass Phase Transition

    Full text link
    The critical phenomenon of the zero temperature superfluid--Bose-glass phase transition for hard-core bosons on a three-dimensional disordered lattice is studied using a quantum real-space renormalization-group method. The correlation-length exponent ν\nu and the dynamic exponent z are computed. The critical exponent z is found to be 2.5 for compressible states and 1.3 for incompressible states. The exponent ν\nu is shown to be insensitive to z as that in the two-dimensional case, and has value roughly equal to 1.Comment: 11 pages, REVTE

    Mediation: Incomplete information bargaining with filtered communication

    Get PDF
    Trabajo publicado como artículo en Journal of Mathematical Economics 39(7): 803-830 (2003).-- http://dx.doi.org/10.1016/S0304-4068(03)00048-XWe analyze a continuous-time bilateral double auction in the presence of two-sided incomplete information and a smallest money unit. A distinguishing feature of our model is that intermediate concessions are not observable by the adversary: they are only communicated to a passive auctioneer. An alternative interpretation is that of mediated bargaining. We show that an equilibrium using only the extreme agreements always exists and display the necessary and sufficient condition for the existence of (perfect Bayesian) equilibra which yield intermediate agreements. For the symmetric case with uniform type distribution we numerically calculate the equilibria. We find that the equilibrium which does not use compromise agreements is the least efficient, however, the rest of the equilibria yield the lower social welfare the higher number of compromise agreements are used

    Holographic Fermi and Non-Fermi Liquids with Transitions in Dilaton Gravity

    Get PDF
    We study the two-point function for fermionic operators in a class of strongly coupled systems using the gauge-gravity correspondence. The gravity description includes a gauge field and a dilaton which determines the gauge coupling and the potential energy. Extremal black brane solutions in this system typically have vanishing entropy. By analyzing a charged fermion in these extremal black brane backgrounds we calculate the two-point function of the corresponding boundary fermionic operator. We find that in some region of parameter space it is of Fermi liquid type. Outside this region no well-defined quasi-particles exist, with the excitations acquiring a non-vanishing width at zero frequency. At the transition, the two-point function can exhibit non-Fermi liquid behaviour.Comment: 52 pages, 6 figures. v3: Appendix F added showing numerical interpolation between the near-horizon region and AdS4. Additional minor comments also adde

    Supersymmetric Chern-Simons Theories with Vector Matter

    Full text link
    In this paper we discuss SU(N) Chern-Simons theories at level k with both fermionic and bosonic vector matter. In particular we present an exact calculation of the free energy of the N=2 supersymmetric model (with one chiral field) for all values of the 't Hooft coupling in the large N limit. This is done by using a generalization of the standard Hubbard-Stratanovich method because the SUSY model contains higher order polynomial interactions.Comment: 46 pages, 24 figures, v2: comments and references added, v3: a footnote in Section 3.5 adde
    corecore