4,407 research outputs found
Adherence to a behavioral weight loss treatment program enhances weight loss and improvements in biomarkers
Objectives: To describe participants' adherence to multiple components (attendance, energy intake, fat gram, exercise goals, and self-monitoring eating and exercise behaviors) of a standard behavioral treatment program (SBT) for weight loss and how adherence to these components may influence weight loss and biomarkers (triglycerides, low density lipoproteins [LDL], high density lipoprotein, and insulin) during the intensive and less-intensive intervention phases. Methods: A secondary analysis of a randomized clinical trial consisting of a SBT with either fat-restricted standard or lacto-ovo vegetarian diet. The 12-month intervention was delivered in 33 group sessions. The first six months reflected the intensive phase; the second six months, the less-intensive intervention phase. We conducted the analysis without regard to treatment assignment. Eligible participants included overweight/obese adults (N = 176; mean body mass index = 34.0 kg/m2). The sample was 86.9% female, 70.5% White, and 44.4 ± 8.6 years old. The outcome measures included weight and biomarkers. Results: There was a significant decline in adherence to each treatment component over time (P < 0.0001). In the first six months, adherence to attendance, self-monitoring and the energy goal were significantly associated with greater weight loss (P < 0.05). Adherence to attendance and exercise remained significantly associated with weight loss in the second six months (P < 0.05). Adherence to attendance, self-monitoring and exercise had indirect effects through weight loss on LDL, triglycerides, and insulin (P < 0.05). Conclusions: We observed a decline in adherence to each treatment component as the intervention intensity was reduced. Adherence to multiple treatment components was associated with greater weight loss and improvements in biomarkers. Future research needs to focus on improving and maintaining adherence to all components of the treatment protocol to promote weight loss and maintenance. © 2009 Acharya et al
A Family of Maximum Margin Criterion for Adaptive Learning
In recent years, pattern analysis plays an important role in data mining and
recognition, and many variants have been proposed to handle complicated
scenarios. In the literature, it has been quite familiar with high
dimensionality of data samples, but either such characteristics or large data
have become usual sense in real-world applications. In this work, an improved
maximum margin criterion (MMC) method is introduced firstly. With the new
definition of MMC, several variants of MMC, including random MMC, layered MMC,
2D^2 MMC, are designed to make adaptive learning applicable. Particularly, the
MMC network is developed to learn deep features of images in light of simple
deep networks. Experimental results on a diversity of data sets demonstrate the
discriminant ability of proposed MMC methods are compenent to be adopted in
complicated application scenarios.Comment: 14 page
Bicontinuous minimal surface nanostructures for polymer blend solar cells
This paper presents the first examination of the potential for bicontinuous structures such as the gyroid structure to produce high efficiency solar cells based on conjugated polymers. The solar cell characteristics are predicted by a simulation model that shows how the morphology influences device performance through integration of all the processes occurring in organic photocells in a specified morphology. In bicontinuous phases, the surface de. ning the interface between the electron and hole transporting phases divides the volume into two disjoint subvolumes. Exciton loss is reduced because the interface at which charge separation occurs permeates the device so excitons have only a short distance to reach the interface. As each of the component phases is connected, charges will be able to reach the electrodes more easily. In simulations of the current-voltage characteristics of organic cells with gyroid, disordered blend and vertical rod (rods normal to the electrodes) morphologies, we find that gyroids have a lower than anticipated performance advantage over disordered blends, and that vertical rods are superior. These results are explored thoroughly, with geminate recombination, i.e. recombination of charges originating from the same exciton, identified as the primary source of loss. Thus, if an appropriate materials choice could reduce geminate recombination, gyroids show great promise for future research and applications
Relaxed 2-D Principal Component Analysis by Norm for Face Recognition
A relaxed two dimensional principal component analysis (R2DPCA) approach is
proposed for face recognition. Different to the 2DPCA, 2DPCA- and G2DPCA,
the R2DPCA utilizes the label information (if known) of training samples to
calculate a relaxation vector and presents a weight to each subset of training
data. A new relaxed scatter matrix is defined and the computed projection axes
are able to increase the accuracy of face recognition. The optimal -norms
are selected in a reasonable range. Numerical experiments on practical face
databased indicate that the R2DPCA has high generalization ability and can
achieve a higher recognition rate than state-of-the-art methods.Comment: 19 pages, 11 figure
Recommended from our members
Divided attention selectively impairs memory for self-relevant information
Information that is relevant to oneself tends to be remembered more than information that relates to other people, but the role of attention in eliciting this "self-reference effect" is unclear. In the present study, we assessed the importance of attention in self-referential encoding using an ownership paradigm, which required participants to encode items under conditions of imagined ownership by themselves or by another person. Previous work has established that this paradigm elicits a robust self-reference effect, with more "self-owned" items being remembered than "other-owned" items. Access to attentional resources was manipulated using divided-attention tasks at encoding. A significant self-reference effect emerged under full-attention conditions and was related to an increase in episodic recollection for self-owned items, but dividing attention eliminated this memory advantage. These findings are discussed in relation to the nature of self-referential cognition and the importance of attentional resources at encoding in the manifestation of the self-reference effect in memory
Selection for Replicases in Protocells
PMCID: PMC3649988This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Multi-scale initial conditions for cosmological simulations
We discuss a new algorithm to generate multi-scale initial conditions with
multiple levels of refinements for cosmological "zoom-in" simulations. The
method uses an adaptive convolution of Gaussian white noise with a real space
transfer function kernel together with an adaptive multi-grid Poisson solver to
generate displacements and velocities following first (1LPT) or second order
Lagrangian perturbation theory (2LPT). The new algorithm achieves RMS relative
errors of order 10^(-4) for displacements and velocities in the refinement
region and thus improves in terms of errors by about two orders of magnitude
over previous approaches. In addition, errors are localized at coarse-fine
boundaries and do not suffer from Fourier-space induced interference ringing.
An optional hybrid multi-grid and Fast Fourier Transform (FFT) based scheme is
introduced which has identical Fourier space behaviour as traditional
approaches. Using a suite of re-simulations of a galaxy cluster halo our real
space based approach is found to reproduce correlation functions, density
profiles, key halo properties and subhalo abundances with per cent level
accuracy. Finally, we generalize our approach for two-component baryon and
dark-matter simulations and demonstrate that the power spectrum evolution is in
excellent agreement with linear perturbation theory. For initial baryon density
fields, it is suggested to use the local Lagrangian approximation in order to
generate a density field for mesh based codes that is consistent with
Lagrangian perturbation theory instead of the current practice of using the
Eulerian linearly scaled densities.Comment: 22 pages, 24 figures. MNRAS in press. Updated affiliation
Neuroimaging Evidence of Major Morpho-Anatomical and Functional Abnormalities in the BTBR T+TF/J Mouse Model of Autism
BTBR T+tf/J (BTBR) mice display prominent behavioural deficits analogous to the defining symptoms of autism, a feature that has prompted a widespread use of the model in preclinical autism research. Because neuro-behavioural traits are described with respect to reference populations, multiple investigators have examined and described the behaviour of BTBR mice against that exhibited by C57BL/6J (B6), a mouse line characterised by high sociability and low self-grooming. In an attempt to probe the translational relevance of this comparison for autism research, we used Magnetic Resonance Imaging (MRI) to map in both strain multiple morpho-anatomical and functional neuroimaging readouts that have been extensively used in patient populations. Diffusion tensor tractography confirmed previous reports of callosal agenesis and lack of hippocampal commissure in BTBR mice, and revealed a concomitant rostro-caudal reorganisation of major cortical white matter bundles. Intact inter-hemispheric tracts were found in the anterior commissure, ventro-medial thalamus, and in a strain-specific white matter formation located above the third ventricle. BTBR also exhibited decreased fronto-cortical, occipital and thalamic gray matter volume and widespread reductions in cortical thickness with respect to control B6 mice. Foci of increased gray matter volume and thickness were observed in the medial prefrontal and insular cortex. Mapping of resting-state brain activity using cerebral blood volume weighted fMRI revealed reduced cortico-thalamic function together with foci of increased activity in the hypothalamus and dorsal hippocampus of BTBR mice. Collectively, our results show pronounced functional and structural abnormalities in the brain of BTBR mice with respect to control B6 mice. The large and widespread white and gray matter abnormalities observed do not appear to be representative of the neuroanatomical alterations typically observed in autistic patients. The presence of reduced fronto-cortical metabolism is of potential translational relevance, as this feature recapitulates previously-reported clinical observations
Formation of Supermassive Black Holes
Evidence shows that massive black holes reside in most local galaxies.
Studies have also established a number of relations between the MBH mass and
properties of the host galaxy such as bulge mass and velocity dispersion. These
results suggest that central MBHs, while much less massive than the host (~
0.1%), are linked to the evolution of galactic structure. In hierarchical
cosmologies, a single big galaxy today can be traced back to the stage when it
was split up in hundreds of smaller components. Did MBH seeds form with the
same efficiency in small proto-galaxies, or did their formation had to await
the buildup of substantial galaxies with deeper potential wells? I briefly
review here some of the physical processes that are conducive to the evolution
of the massive black hole population. I will discuss black hole formation
processes for `seed' black holes that are likely to place at early cosmic
epochs, and possible observational tests of these scenarios.Comment: To appear in The Astronomy and Astrophysics Review. The final
publication is available at http://www.springerlink.co
Mitochondrial Dysfunction and β-Cell Failure in Type 2 Diabetes Mellitus
Type 2 diabetes mellitus (T2DM) is the most common human endocrine disease and is characterized by peripheral insulin resistance and pancreatic islet β-cell failure. Accumulating evidence indicates that mitochondrial dysfunction is a central contributor to β-cell failure in the evolution of T2DM. As reviewed elsewhere, reactive oxygen species (ROS) produced by β-cell mitochondria as a result of metabolic stress activate several stress-response pathways. This paper focuses on mechanisms whereby ROS affect mitochondrial structure and function and lead to β-cell failure. ROS activate UCP2, which results in proton leak across the mitochondrial inner membrane, and this leads to reduced β-cell ATP synthesis and content, which is a critical parameter in regulating glucose-stimulated insulin secretion. In addition, ROS oxidize polyunsaturated fatty acids in mitochondrial cardiolipin and other phospholipids, and this impairs membrane integrity and leads to cytochrome c release into cytosol and apoptosis. Group VIA phospholipase A2 (iPLA2β) appears to be a component of a mechanism for repairing mitochondrial phospholipids that contain oxidized fatty acid substituents, and genetic or acquired iPLA2β-deficiency increases β-cell mitochondrial susceptibility to injury from ROS and predisposes to developing T2DM. Interventions that attenuate ROS effects on β-cell mitochondrial phospholipids might prevent or retard development of T2DM
- …
