10,947 research outputs found

    Capacity limits of MIMO channels with co-channel interference

    Get PDF

    Wireless schedulers with future sight via real-time 3D environment mapping

    Get PDF

    Comparative proteomics of uropathogenic Escherichia coli during growth in human urine identify UCA-like (UCL) fimbriae as an adherence factor involved in biofilm formation and binding to uroepithelial cells

    Get PDF
    Uropathogenic Escherichia coli (UPEC) are the primary cause of urinary tract infection (UTI) in humans. For the successful colonisation of the human urinary tract, UPEC employ a diverse collection of secreted or surface-exposed virulence factors including toxins, iron acquisition systems and adhesins. In this study, a comparative proteomic approach was utilised to define the UPEC pan and core surface proteome following growth in pooled human urine. Identified proteins were investigated for subcellular origin, prevalence and homology to characterised virulence factors. Fourteen core surface proteins were identified, as well as eleven iron uptake receptor proteins and four distinct fimbrial types, including type 1, P, F1C/S and a previously uncharacterised fimbrial type, designated UCA-like (UCL) fimbriae in this study. These pathogenicity island (PAI)-associated fimbriae are related to UCA fimbriae of Proteus mirabilis, associated with UPEC and exclusively found in members of the E. coli B2 and D phylogroup. We further demonstrated that UCL fimbriae promote significant biofilm formation on abiotic surfaces and mediate specific attachment to exfoliated human uroepithelial cells. Combined, this study has defined the surface proteomic profiles and core surface proteome of UPEC during growth in human urine and identified a new type of fimbriae that may contribute to UTI

    Low-feedback multiple-access and scheduling via location and geometry information

    Get PDF

    A Comparison of Human and Machine Estimation of Speaker Age

    Get PDF
    The estimation of the age of a speaker from his or her voice has both forensic and commercial applications. Previous studies have shown that human listeners are able to estimate the age of a speaker to within 10 years on average, while recent machine age estimation systems seem to show superior performance with average errors as low as 6 years. However the machine studies have used highly non-uniform test sets, for which knowledge of the age distribution offers considerable advantage to the system. In this study we compare human and machine performance on the same test data chosen to be uniformly distributed in age. We show that in this case human and machine accuracy is more similar with average errors of 9.8 and 8.6 years respectively, although if panels of listeners are consulted, human accuracy can be improved to a value closer to 7.5 years. Both human and machines have difficulty in accurately predicting the ages of older speakers

    Laser frequency comb techniques for precise astronomical spectroscopy

    Full text link
    Precise astronomical spectroscopic analyses routinely assume that individual pixels in charge-coupled devices (CCDs) have uniform sensitivity to photons. Intra-pixel sensitivity (IPS) variations may already cause small systematic errors in, for example, studies of extra-solar planets via stellar radial velocities and cosmological variability in fundamental constants via quasar spectroscopy, but future experiments requiring velocity precisions approaching ~1 cm/s will be more strongly affected. Laser frequency combs have been shown to provide highly precise wavelength calibration for astronomical spectrographs, but here we show that they can also be used to measure IPS variations in astronomical CCDs in situ. We successfully tested a laser frequency comb system on the Ultra-High Resolution Facility spectrograph at the Anglo-Australian Telescope. By modelling the 2-dimensional comb signal recorded in a single CCD exposure, we find that the average IPS deviates by <8 per cent if it is assumed to vary symmetrically about the pixel centre. We also demonstrate that series of comb exposures with absolutely known offsets between them can yield tighter constraints on symmetric IPS variations from ~100 pixels. We discuss measurement of asymmetric IPS variations and absolute wavelength calibration of astronomical spectrographs and CCDs using frequency combs.Comment: 11 pages, 7 figures. Accepted for publication in MNRA

    p63 is a key regulator of iRHOM2 signalling in the keratinocyte stress response.

    Get PDF
    Hyperproliferative keratinocytes induced by trauma, hyperkeratosis and/or inflammation display molecular signatures similar to those of palmoplantar epidermis. Inherited gain-of-function mutations in RHBDF2 (encoding iRHOM2) are associated with a hyperproliferative palmoplantar keratoderma and squamous oesophageal cancer syndrome (termed TOC). In contrast, genetic ablation of rhbdf2 in mice leads to a thinning of the mammalian footpad, and reduces keratinocyte hyperproliferation and migration. Here, we report that iRHOM2 is a novel target gene of p63 and that both p63 and iRHOM2 differentially regulate cellular stress-associated signalling pathways in normal and hyperproliferative keratinocytes. We demonstrate that p63-iRHOM2 regulates cell survival and response to oxidative stress via modulation of SURVIVIN and Cytoglobin, respectively. Furthermore, the antioxidant compound Sulforaphane downregulates p63-iRHOM2 expression, leading to reduced proliferation, inflammation, survival and ROS production. These findings elucidate a novel p63-associated pathway that identifies iRHOM2 modulation as a potential therapeutic target to treat hyperproliferative skin disease and neoplasia

    Optical Monitoring of PKS 1510-089: A Binary Black Hole System?

    Full text link
    Three deep flux minima were observed with nearly the same time-scales and intervals for the blazar PKS 1510-089 in the past few years. A binary black hole system was proposed to be at the nucleus of this object, and a new minimum was predicted to occur in 2002 March. We monitored this source with a 60/90 cm Schmidt telescope from 2002 February to April. In combination with the data obtained by Xie et al. (2004) in the same period, we presented for the 2002 minimum a nearly symmetric light curve, which would be required by an eclipsing model of a binary black hole system. We also constrained the time-scale of the minimum to be 35 min, which is more consistent with the time-scales ~42 min of the three previous minima than the 89 min time-scale given by the same authors. The wiggling miniarcsecond radio jet observed in this object is taken as a further evidence for the binary black hole system. The `coupling' of the periodicity in light curve and the helicity in radio jet is discussed in the framework of a binary black hole system.Comment: 5 pages, 4 figures, accepted by MNRA

    Monoclonal antibody Py recognizes neurofilament heavy chain and is a selective marker for large diameter neurons in the brain Brain Structure and Function

    Get PDF
    Almost 30 years ago, the monoclonal antibody Py was developed to detect pyramidal neurons in the CA3 region of the rat hippocampus. The utility of this antibody quickly expanded when several groups discovered that it could be used to identify very specific populations of neurons in the normal, developing, and diseased or injured central nervous system. Despite this body of literature, the identity of the antigen that the Py antibody recognizes remained elusive. Here, immunoprecipitation experiments from the adult rat cortex identified the Py antigen as neurofilament heavy chain (NF-H). Double immunolabeling of sections through the rat brain using Py and NF-H antibodies confirmed the identity of the Py antigen, and reveal that Py/NF-H+ neurons appear to share the feature of being particularly large in diameter. These include the neurons of the gigantocellular reticular formation, pyramidal neurons of layers II/III and V of the cortex, cerebellar Purkinje neurons as well as CA3 pyramidal neurons. Taken together, this finding gives clarity to past work using the monoclonal Py antibody, and immediately expands our understanding of the importance of NF-H in neural development, functioning, and disease
    corecore